首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, nineteen unmodified lignins from various sources (hardwood, softwood, wheat straw, and corn stover) and isolation processes (kraft, soda, organosolv, sulfite, and enzymatic hydrolysis) were used to replace 30 wt.% of petroleum-based polyol in rigid polyurethane/polyisocyanurate (PUR/PIR) foam formulations. Lignin samples were characterized by measuring their ash content, hydroxyl content (Phosphorus Nuclear Magnetic Resonance Spectroscopy), impurities (Inductively Coupled Plasma), and pH. After foam formulation, properties of lignin-based foams were evaluated and compared with a control foam (with no lignin) via cell morphology, closed-cell content, compression strength, apparent density, thermal conductivity, and color analysis. Lignin-based foams passed all measured standard specifications required by ASTM International C1029-15 for type 1 rigid insulation foams, except for three foams. These three foams had poor compressive strengths, significantly larger cell sizes, darker color, lower closed-cell contents, and slower foaming times. The foam made with corn stover enzymatic hydrolysis lignin showed no significant difference from the control foam in terms of compressive strength and outperformed all other lignin-based foams due to its higher aliphatic and p-hydroxyphenyl hydroxyl contents. Lignin-based foams that passed all required performance testing were made with lignins having higher pH, potassium, sodium, calcium, magnesium, and aliphatic/p-hydroxyphenyl hydroxyl group contents than those that failed.  相似文献   

2.
Lignin-and molasses-based polyurethane (PU) foams with various lignin/molasses mixing ratios were prepared. The hydroxyl group in molasses and lignin is used as the reaction site and PU foams with various isocyanate (NCO)/the hydroxyl group (OH) ratios were obtained. Thermal properties of PU foams were investigated by differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal conductivity measurement. Glass transition temperature (T g) was observed depending on NCO/OH ratio in a temperature range from ca. 80 to 120°C and thermal decomposition temperature (T d) from ca. 280 to 295°C. Mixing ratio of molasses and lignin polyol scarcely affected the T g and T d. Thermal conductivity of PU foams was in a range from 0.030 to 0.040 Wm−1 K−1 depending on mixing ratio of lignin and molasses.  相似文献   

3.
This work presents thermal studies of nanocomposites based on the flexible polyurethane (PU) matrix and filled using montmorillonite organically modified with organophosphorus flame retardant compound. Flexible PU nanocomposite foams were prepared in the reaction carried out between reactive alcoholic hydroxyl and isocyanate groups with the ratio of NCO to OH groups equal to 1.05. The amount of an organoclay ranging from 3 to 9 vol% was added to the polyol component of the resin before mixing with isocyanate. The apparent density of PU foams was ranging from 0.066 to 0.077 g cm?1. Thermal properties of the flexible PU nanocomposite foams were investigated by thermogravimetry and dynamical mechanical analysis. Glass transition temperatures (T g) were defined as maximum peak on tanδ curve. Thermal decomposition was observed at 310–320 °C (calculated from the onset of TG curve). Tensile strength of the PU foams was determined using mechanical test. The microstructure of the nanoparticles and the composites was investigated by X-ray diffraction. Finally, it was confirmed that the thermal and mechanical properties of flexible PU nanocomposite depend on the amount of nanoclay.  相似文献   

4.
Environmentally compatible polymers such as poly(ε-caprolactone) (PCL) and polyurethane (PU) derivatives from PCL's were synthesized from saccharides, polysaccharides and lignins such as glucose, fructose, sucrose, cellulose, cellulose acetate, alcoholysis lignin, kraft lignin and sodium lignosulfonate. Flexible and rigid PU sheets and foams were also prepared by the reaction of OH groups of saccharides and lignins with isocyanates such as toluene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI). Glass transition temperatures (Tg's), cold-crystallization temperatures (Tcc's) and melting temperatures (Tm's) of saccharide- and lignin-based PCL's and PU's were determined by differential scanning calorimetry (DSC), and phase diagrams were obtained. Methods of controlling mechanical properties such as stress and elasticity of PU's through changing thermal properties such as glass transition temperature were established. Thermogravimetry (TG) and TG-Fourier transform infrared spectrometry (FTIR) were also carried out in order to analyze the degradation temperature and evolved gases from the above obtained polymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Semi-rigid polyurethane (PU) foams were prepared using lignin-molasses- poly(ethylene glycol) polyols. Two kinds of lignin, kraft lignin (KL) and sodium lignosulfonate (LS), were used. Both lignin and molasses polyols were mixed with various ratios and were reacted with poly(phenylene methylene) polyisocyanate (MDI) in the presence of silicone surfactant and di-n-butyltin dilaurate. A small amount of water was used as a foaming agent. The apparent density of PU foams increased with increasing lignin content. The compression strength and elastic modulus linearly increase with increasing apparent density, suggesting that mechanical properties are controllable by changing reaction conditions. The PU foams were amorphous and glass transition was detected by differential scanning calorimetry. The glass transition temperature (Tg ) maintained an almost constant value, regardless of the mixing ratio. This indicates that both the phenolic group of lignin and the glucopyranose ring of molasses act as rigid components in PU crosslinking network structures, and both groups contribute to the main chain motion to the same extent. By thermogravimetry (TG), it was confirmed that PU foams are thermally stable up to around 300 °C. By differential scanning calorimetry, Tg was observed at temperatures from 80 to 120 °C.  相似文献   

6.
A new method for the synthesis of lignin-based liquid polyols was developed. Organosolv lignin was reacted with ethylene carbonate in polyethylene glycol as solvent, leading to a full conversion of the phenolic OH into primary aliphatic OH groups. These aromatic polyols are obtained in a single step, without any purification. Upon modification of the polyethylene glycol molar mass, a wide range of hydroxyl values (IOH) can be covered. The polyols with up to 30%wt lignin have a viscosity suitable for the direct elaboration of polyurethane (PUR) foams. The method presents significant advantages over oxypropylation, the most common method for producing lignin-based polyols since it is performed at ambient pressure, without any toxic chemicals, does not require purification or post treatment, and allows to produce polyols with tunable properties. Four different aromatic polyols were then synthesized to produce rigid PUR foams, with substitution of up to 100% of a standard polyether polyol. The developed polyols showed very high reactivity, allowing to reduce the catalyst content in the PUR formulation by 75%. Rigid PUR foams prepared with 25% substitution of the standard polyol showed properties in the range of commercial PUR foams, with more than 90% closed cells and thermal conductivity of about 25 mW m?1/K, perfectly adequate for thermal insulation applications.  相似文献   

7.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

8.
Novel copolymers of polyurethane (PU) were prepared by direct transurethanetion reaction of a commercial PU with polydimethylsiloxanes (PDMS, MW 1000, 5000, and 10,000) containing hydroxyl end-groups. Transurethanetions with different mass ratios of hydrophobic PDMS to hydrophilic PU chains (PDMS1000–PU: 43:57, 67:33, 71:29, and 80:20; PDMS5000–PU: 37:63, and 51:49; PDMS10000–PU: 51:49) were carried out in solution at 65 and 100 °C. In catalyzed reactions, dibutyltin dilaurate (SnC32H64O4) was used to promote bond breaking in the PU chain and accelerate the reaction between hydroxyl end-groups of PDMS and regenerated isocyanates of PU. The chemical structures of the prepared copolymers were comprehensively characterized by 1H, 13C, and 29Si NMR spectroscopies. According to elemental analysis, the content of PDMS varied between 3 wt.% and 16 wt.%, and results obtained from the 1H NMR spectroscopy were in good agreement with the results of elemental analysis. Increased length of the hydrophobic chain increased the content of PDMS in the copolymer. The GPC results showed that molar masses of the PUPDMS copolymers were lower than the molar mass of the starting PU. The glass transitions (Tg) of the copolymers were shifted to lower temperature as compared with Tg of the starting polyurethane. ATR FTIR spectroscopy showed the surface of the copolymer films to be enriched with siloxane groups and, according to electron microscopy, it was textured with microspheres. The static contact angles for copolymer films measured with deionized water ranged from 94° to 117°. The different structural, thermal and surface properties of the PUPDMS copolymers as compared with PU indicated that transurethanetion had taken place.  相似文献   

9.
Rigid polyurethane (PU) foams having saccharide and castor oil structures in the molecular chain were prepared by reaction between reactive alcoholic hydroxyl group and isocyanate. The apparent density of PU foams was in a range from 0.05 to 0.15 g cm?3. Thermal properties of the above polyurethane foams were studied by differential scanning calorimetry, thermogravimetry and thermal conductivity measurement. Glass transitions were observed in two steps. The low-temperature side glass transition was observed at around 220 K, regardless of castor oil content. This transition is attributed to the molecular motion of alkyl chain groups of castor oil. The high-temperature side glass transition observed in the temperature range from 350 to 390 K depends on the amount of molasses polyol content. The high-temperature side glass transition is attributed to the molecular motion of saccharides, such as sucrose, glucose, fructose as well as isocyanate phenyl rings, which act as rigid components. Thermal decomposition was observed in two steps at 570 and 620–670 K. Thermal conductivity was observed at around 0.032 J sec?1 m?1 K?1. Compression strength and modulus of PU foams were obtained by mechanical test. It was confirmed that the thermal and mechanical properties of PU foams could be controlled by changing the mixing ratio of castor oil and molasses for suitable practical applications.  相似文献   

10.
Sodium ligninosulfonate (LS)-based polyurethane (PU) foams were prepared using three kinds of ethylene glycols, diethylene glycol, triethylene glycol or polyethylene glycol. Two kinds of industrial NaLS, acid-based and alkaline-based NaLS, were mixed with various ratios, and foaming reactions were controlled. Mixing, cream, and rise time were used as an index of foaming reaction. Mixing time was defined as the time interval from adding isocyanate to detection of evolved heat under stirring, cream time as the time interval from termination of stirring to starting of foaming, and rise time as the time interval from starting to completion of foaming. The above reaction time increased with increasing amount of acid base NaLS content in polyols. Apparent density, compression strength and compression modulus of PU foams linearly increased with reaction time. Thermal decomposition temperature was measured by thermogravimetry and glass transition temperature by differential scanning calorimetry. Glass transition temperature can be controlled in a temperature range from 310 to 390 K by changing the mixing rate of two kinds of LS and molecular mass of ethylene glycols. It was found that mechanical and thermal properties of PU foams are controllable through the foaming reaction rate using two kinds of industrial lignin.  相似文献   

11.
Magnetorheological (MR) materials are a group of smart materials which have the controllable magnetic properties with an external magnetic field. Magnetic foams, a specific type of MR solids, were synthesized from flexible polyurethane (PU) foams and carbonyl iron particles. Effects of the carbonyl iron particles on the thermal stability of the magnetic foams have been studied. Thermogravimetric analysis (TGA) was applied to characterize the thermal degradation process of the magnetic foams and then the apparent activation energy of degradation was calculated by using Ozawa's method [Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 1965; 38: 1881-1886.]. The carbonyl iron particles were found to improve the thermal stability of magnetic foams in nitrogen by showing higher 10 wt% loss temperature, slower weight loss rate and higher apparent activation energy than pure PU foams. But the magnetic foams were observed to have slightly worse thermal stability in air than pure PU foams at the earlier degradation stage. At the later degradation stage, the magnetic foams exhibited the higher activation energy than pure PU foams in air.  相似文献   

12.
In the present work, lanthanum phenylphosphonate (LaPP)–based multilayered film was fabricated on the surface of flexible polyurethane (PU) foam by layer‐by‐layer self‐assembled method. The successful deposition of the coating was confirmed by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX). Subsequently, the thermal decomposition and burning behavior of untreated and treated PU foams were investigated by thermogravimetric analysis (TGA) and cone calorimeter, respectively. The TGA results indicated that Tmax2 of treated PU foams were increased by approximately 15°C to 20°C as compared with untreated PU foam. The peak heat release rate (PHRR) and total heat release (THR) of PU‐6 (with 19.5 wt% weight gain) were 188 kW/m2 and 20.3 MJ/m2, with reductions of 70% and 15% as compared with those of untreated PU foam, respectively. Meanwhile, the smoke production of treated PU foam was suppressed after the construction of LaPP‐based coating.  相似文献   

13.
Several efforts have been dedicated to the development of lignin-based polyurethanes (PU) in recent years. The low and heterogeneous reactivity of lignin hydroxyl groups towards diisocyanates, arising from their highly complex chemical structure, limits the application of this biopolymer in PU synthesis. Besides the well-known differences in the reactivity of aliphatic and aromatic hydroxyl groups, experimental work in which the reactivity of both types of hydroxyl, especially the aromatic ones present in syringyl (S-unit), guaiacyl (G-unit), and p-hydroxyphenyl (H-unit) building units are considered and compared, is still lacking in the literature. In this work, the hydroxyl reactivity of two kraft lignin grades towards 4,4′-diphenylmethane diisocyanate (MDI) was investigated. 31P NMR allowed the monitoring of the reactivity of each hydroxyl group in the lignin structure. FTIR spectra revealed the evolution of peaks related to hydroxyl consumption and urethane formation. These results might support new PU developments, including the use of unmodified lignin and the synthesis of MDI-functionalized biopolymers or prepolymers.  相似文献   

14.
In this work, the use of post-consumer PET (polyethylene terephthalate), PETpc, as reinforcement filler in flexible polyurethane foams was studied, with the aim of finding alternatives for the recycling of polymer packaging. Density, number of cells per linear centimeter, tensile resistance, strain at break and tear resistance of standard foams were compared to those of foams with PETpc in the formulation, using 1.5 parts per hundred of polyol of PETpc (granulometric range 0–297 μm). The produced foams were sectioned into top, mid-top, mid-bottom and bottom layers. Tensile resistance, strain at break and tear resistance of the reinforced foam surpassed those of the standard foam for all layers. The number of cells was constant but density increased towards the base of the block. In addition, the filled foams yielded better wear, compression set and compression resistance than the standard foam, whereas no significant variation in morphology (cell shape) was found.  相似文献   

15.
Rigid polyurethane (PU) foams were successfully filled with different weight ratios of melamine (1 wt%, 5 wt%, 10 wt%), silica (0.1 wt%) and ionic liquid, 1-Ethyl-3-methylimidazolium chloride, [EMIM]Cl (0.3 wt%). The aim of this study was to improve the flame retardancy of PU foams and to develop the synergistic effect between melamine, silica and ionic liquid on the flame-retardant PU foams. The influence of different loadings of the fillers was examined. The results showed that in comparison with unfilled foam, all modified compositions are characterized by higher density (41–46 kg m−3), greater compression strength (134–148 kPa), and comparable thermal conductivity (0.023–0.026 W m−1 K−1). Moreover, the reaction to fire of the PU composites has been investigated by the cone calorimeter test. The results showed that the fire resistance of PU foams containing as little as 1 wt% of melamine is significantly improved. For example, the results from the cone calorimeter test showed that the incorporation of the melamine, silica and ionic liquid significantly reduced the peak of heat release rate (pHRR) by ca. 84% compared with that of unmodified PU foam. SEM results showed that incorporated fillers can form an intumescent char layer during combustion which improves the reaction to fire of the composite foams.  相似文献   

16.
In this work, to elucidate why the acid-pretreated bamboo shows disappointingly low enzymatic digestibility comparing to the alkali-pretreated bamboo, residual lignins in acid-pretreated and kraft pulped bamboo were isolated and analyzed by adsorption isotherm to evaluate their extents of nonproductive enzyme adsorption. Meanwhile, physicochemical properties of the isolated lignins were analyzed and a relationship was established with non-productive adsorption. Results showed that the adsorption affinity and binding strength of cellulase on acid-pretreated bamboo lignin (MWLa) was significantly higher than that on residual lignin in pulped bamboo (MWLp). The maximum adsorption capacity of cellulase on MWLp was 129.49 mg/g lignin, which was lower than that on MWLa (160.25 mg/g lignin). When isolated lignins were added into the Avicel hydrolysis solution, the inhibitory effect on enzymatic hydrolysis efficiency of MWLa was found to be considerably stronger than that with MWLp. The cellulase adsorption on isolated lignins was correlated positively with hydrophobicity, phenolic hydroxyl group, and degree of condensation but negatively with surface charges and aliphatic hydroxyl group. These results suggest that the higher nonproductive cellulase adsorption and physicochemical properties of residual lignin in acid-pretreated bamboo may be responsible for its disappointingly low enzymatic digestibility.  相似文献   

17.
Oxidation of lignin obtained from acetosolv and ethanol/water pulping of sugarcane bagasse was performed by phenol oxidases: tyrosinase (TYR) and laccase (LAC), to increase the number of carbonyl and hydroxyl groups in lignin, and to improve its chelating capacity. The chelating properties of the original and oxidized lignins were compared by monitoring the amount of Cu2+ bound to lignin by gel permeation chromatography. The Acetosolv lignin oxidized with TYR was 16.8% and with LAC 21% higher than that of the original lignin. For ethanol/water lignin oxidized with TYR was 17.2% and with LAC 18% higher than that of the original lignin.  相似文献   

18.
Sodium salt of lignosulfonic acid (LS), which was obtained as by-product of cooking process in sulfite pulping, was solved in diethylene, triethylene or polyethylene glycol. Three series of polyurethane foams (LSPU) were synthesized by varying the LS content from 0 to 33 wt%. Apparent density (ρ) of LSPU foams ranged from 0.08 to 0.18 g cm−3 and was affected by both LS content and oxyethylene chain length. Glass transition temperatures increased with increasing amount of LS and with decreasing oxyethylene chain length. Thermal gravimetry analysis indicated that the LS component decomposes first and that the thermal stability increases with decreasing oxyethylene chain length. Compression strength and compression modulus increased linearly with increasing apparent density. It is concluded that LS is successfully utilized as a hard segment of rigid PU foams, whose thermal and mechanical properties can be tuned by changing the amount of LS and the length of soft oxyethylene chains.  相似文献   

19.
Some agroforestry residues such as orange and olive tree pruning have been extensively evaluated for their valorization due to its high carbohydrates content. However, lignin-enriched residues generated during carbohydrates valorization are normally incinerated to produce energy. In order to find alternative high added-value applications for these lignins, a depth characterization of them is required. In this study, lignins isolated from the black liquors produced during soda/anthraquinone (soda/AQ) pulping of orange and olive tree pruning residues were analyzed by analytical standard methods and Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (solid state 13C NMR and 2D NMR) and size exclusion chromatography (SEC). Thermal analysis (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)) and antioxidant capacity (Trolox equivalent antioxidant capacity) were also evaluated. Both lignins showed a high OH phenolic content as consequence of a wide breakdown of β-aryl ether linkages. This extensive degradation yielded lignins with low molecular weights and polydispersity values. Moreover, both lignins exhibited an enrichment of syringyl units together with different native as well as soda/AQ lignin derived units. Based on these chemical properties, orange and olive lignins showed relatively high thermal stability and good antioxidant activities. These results make them potential additives to enhance the thermo-oxidation stability of synthetic polymers.  相似文献   

20.
In this work the cure behavior and rheological and mechanical interfacial properties of the diglycidylether of bisphenol A (DGEBA)/polyurethane (PU) blend system, initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate as a latent thermal catalyst, were investigated. To characterize the mechanical interfacial properties of the system, the critical stress intensity factor (KIC) was calculated with a single‐edge‐notched beam (SEN) beam fracture toughness test. And an impact test was performed at room and cryogenic temperatures to determine the performance of PU at room and low‐temperatures, respectively. As a result, the Ec of the blend system was increased with increasing PU content, showing a maximum value at 30 wt % PU, which was in good agreement with the mechanical properties of the blend system. Consequently, these results could be explained by the improvement that occurred in intermolecular hydrogen bonding between the hydroxyl group in EP and the isocyanate group in PU, resulting in increased compatibility of the components within the interpenetrating polymer networks. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3841–3848, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号