首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
VEGFR1 (Flt-1), is a high-affinity tyrosine kinase receptor of VEGF found primarily on vascular endothelial cells. Recently, Flt-1 has shown to be expressed in human monocytes. However, the key intracellular signaling pathway mediated by Flt-1 receptor has been yet to be identified in monocytes. In this regard, using a robust systems biology approach, the key druggable target(s) involved in inflammatory angiogenesis mediated through VEGFR1 signaling was identified. Furthermore, experimental validation of key drug targets is conducted using PMA- and VEGF- stimulated human monocyte THP-1 cell lines. The key network pathways and corresponding disease modules were analyzed to identify the important biological processes perturbed in diseases. Using topological analysis, ICAM1 was identified as putative regulator of monocytes migration into tumor-micro environment. And these targets were examined by treating with curcumin and capsaicin molecules. Our results showed that these two molecules inhibited the over expression of targets such as ICAM1, Flt-1, and NF-κB in the VEGFR1 signalling pathway by reducing THP-1 chemotaxis. Besides, Curcumin and Capsaicin down-regulated expression of pro-inflammatory cytokines TNF-α, IL-6, and CXCL8/IL-8 and up regulated the expression of IL-10, a sign of lowered M1/M2 ratio relating to abrogation of inflammation.  相似文献   

3.
Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin β1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.  相似文献   

4.
Curcumin is an anti-inflammatory and neuroprotective compound in turmeric. It is a potential ligand of the aryl hydrocarbon receptor (AhR) that mediates anti-inflammatory signaling. However, the AhR-mediated anti-inflammatory effect of curcumin within the brain remains unclear. We investigated the role of AhR on the curcumin effect in inflammatory astrogliosis. Curcumin attenuated lipopolysaccharide (LPS)-induced proinflammatory IL-6 and TNF-α gene expression in primary cultured rat astrocytes. When AhR was knocked down, LPS-induced IL-6 and TNF-α were increased and curcumin-decreased activation of the inflammation mediator NF-κB p65 by LPS was abolished. Although LPS increased AhR and its target gene CYP1B1, curcumin further enhanced LPS-induced CYP1B1 and indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan to AhR ligands kynurenine (KYN) and kynurenic acid (KYNA). Potential interactions between curcumin and human AhR analyzed by molecular modeling of ligand–receptor docking. We identified a new ligand binding site on AhR different from the classical 2,3,7,8-tetrachlorodibenzo-p-dioxin site. Curcumin docked onto the classical binding site, whereas KYN and KYNA occupied the novel one. Moreover, curcumin and KYNA collaboratively bound onto AhR during molecular docking, potentially resulting in synergistic effects influencing AhR activation. Curcumin may enhance the inflammation-induced IDO/KYN axis and allosterically regulate endogenous ligand binding to AhR, facilitating AhR activation to regulate inflammatory astrogliosis.  相似文献   

5.
6.
Curcumin (CU) shows a wide range of pharmacological properties including antioxidant, anti‐inflammatory, and antitumor effects. In order to understand the chemical basis of different activities of curcumin, we have studied the oxidation and reduction of curcumin. Based on cyclic and differential pulse voltammetric methods, using carbon paste and hanging mercury drop electrodes, in the present study we tested different parameters to optimize the conditions for the determination of curcumin and its electrochemical characteristics. Better results were obtained via differential pulse voltammetry using carbon paste electrode. Curcumin yields well‐defined differential pulse voltammetric responses with well‐defined oxidation (in the potential region of 0.3–0.6 V, vs. Ag/AgCl) and reduction (at 0.3 V) peaks using carbon paste electrode.  相似文献   

7.
Mitochondrial dysfunction has been associated with diverse pathological conditions globally. Specifically, in adipose tissues, mitochondrial dysfunction is the primary cause of obesity and obesity-related illnesses. An existing drugs such as atorvastatin and other lipid-lowering drugs demonstrated adverse effects and initiated other diseases. Thus, we need to explore new methods to prevent and treat obesity. In this study, we used the cell screening method to identify several natural compounds that increase adipocyte UCP1 gene expression. The identified drug Curcumin was evaluated in cell models and the In-silico model. We found curcumin is an active compound of turmeric belonging to Zingiberaceae (ginger family), which activates the Nrf2 mechanism. Curcumin potentially endorses the expression of UCP1 in the brown adipocyte in vitro cellular model. Curcumin plays an important role that modulating mitochondrial function and improving mitochondrial DNA quantification, ATP production, and cell viability. We have established an efficient in vitro cell experiment system to study the metabolic regulation of UCP1. The in-silico model revealed curcumin-UCP1 interaction. Curcumin, via enhancing mitochondrial activity, could be a helpful therapeutic molecule against metabolic disorders or obesity-related diseases. Curcumin will be the subject of more research in both human and murine models, which will provide novel therapeutic pathways for the treatment of metabolic illnesses by modulating the control of mitochondrial function.  相似文献   

8.
Lysophosphatidic acid (LPA) is a bioactive phospholipids and involves in various cellular events, including tumor cell migration. In the present study, we investigated LPA receptor and its transactivation to EGFR for cyclooxygenase-2 (COX-2) expression and cell migration in CAOV-3 ovarian cancer cells. LPA induced COX-2 expression in a dose-dependent manner, and pretreatment of the cells with pharmacological inhibitors of Gi (pertussis toxin), Src (PP2), EGF receptor (EGFR) (AG1478), ERK (PD98059) significantly inhibited LPA-induced COX-2 expression. Consistent to these results, transfection of the cells with selective Src siRNA attenuated COX-2 expression by LPA. LPA stimulated CAOV-3 cell migration that was abrogated by pharmacological inhibitors and antibody of EP2. Higher expression of LPA2 mRNA was observed in CAOV-3 cells, and transfection of the cells with a selective LPA2 siRNA significantly inhibited LPA-induced activation of EGFR and ERK, as well as COX-2 expression. Importantly, LPA2 siRNA also blocked LPA-induced ovarian cancer cell migration. Collectively, our results clearly show the significance of LPA2 and Gi/Src pathway for LPA-induced COX-2 expression and cell migration that could be a promising drug target for ovarian cancer cell metastasis.  相似文献   

9.
10.
11.
Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin's binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.  相似文献   

12.
The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.  相似文献   

13.
The anti‐cancer mechanisms of curcumin have been reported to include suppressions of angiogenesis and tumor proliferation. The main goal of this research is to increase the solubility of curcumin by cold atmospheric plasma (CAP) and assess the effects of modified curcumin by charging with tri‐polyphosphate chitosan nanoparticles for MCF‐7, MDA‐MB‐231 breast cancer cells, and human fibroblast cells. Curcumin modification was done by CAP and its solubility was evaluated by spectrophotometry. After loading modified curcumin into nano‐chitosan‐TPP, nanocurcumin was characterized by scanning electron microscopy. Cellular viability and apoptosis of treated cells were assessed by MTT and Annexin V. The changes of messenger RNA expression of TP5353 and VEGF genes were analyzed by real‐time PCR. CAP was able to transform the curcumin to possess hydrophilic characteristics after 90 seconds. The mean diameter of Curcumin loaded chitosannanoparticles (NPs) were determined as 48 nm. MTT results showed that the IC50 of nano Cur‐chitosan‐TPP was effectively decreased compared to free curcumin in MCF‐7 (15 μg/mL at 72 hours vs 20 μg/mL at 48 hours). Additionally, nano Cur‐chitosan‐TPP had no significant effect on normal cells (Human dermal fibroblas: HDF), whereas it also decreased the viability of triple negative breast cancer cell line (MDA‐MB‐231). Real‐time PCR results showed that expression level of TP53 gene was upregulated (P = .000), whereas VEGF gene downregulated (P = .000) in treated MCF‐7 cells. Curcumin loaded chitosan nanoparticles have led to an induction of apoptosis (79.93%) and cell cycle arrest (at S and G2M). Modified‐curcumin‐tri‐polyphosphate chitosan nanoparticles using CAP can be considered as a proper candidate for breast cancer treatment.  相似文献   

14.
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.  相似文献   

15.
16.
17.
通过酯化反应合成了新型的氨基酸功能化的果胶衍生物, 通过红外光谱(FTIR)和元素分析确认了果胶衍生物的化学组成及结构, 用动态光散射(DLS)和透射电子显微镜(TEM)表征了果胶衍生物胶体的形貌和尺寸. 结果表明, 果胶衍生物胶体呈现不规则的球状结构, 粒度分布较均一, 平均粒径200 nm. 用紫外-可见(UV-Vis)光谱测试了果胶衍生物胶体对姜黄素的包裹和控制释放, 结果表明, 姜黄素能够有效被果胶衍生物胶束包裹. 体外细胞毒理实验结果表明, 果胶衍生物胶体载体能显著提高姜黄素对HepG2细胞生长的抑制作用.  相似文献   

18.
The natural compound curcumin has been shown to have therapeutic potential against a wide range of diseases such as cancer. Curcumin reduces cell viability of renal cell carcinoma (RCC) cells when combined with TNF-related apoptosis-inducing ligand (TRAIL), a cytokine that specifically targets cancer cells, by helping overcome TRAIL resistance. However, the therapeutic effects of curcumin are limited by its low bioavailability. Similar compounds to curcumin with higher bioavailability, such as demethoxycurcumin (DMC) and 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), can potentially have similar anticancer effects and show a similar synergy with TRAIL, thus reducing RCC viability. This study aims to show the effects of DMC and EF24 in combination with TRAIL at reducing ACHN cell viability and ACHN cell migration. It also shows the changes in death receptor 4 (DR4) expression after treatment with these compounds individually and in combination with TRAIL, which can play a role in their mechanism of action.  相似文献   

19.
Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) displays an intriguing cell biology that is mediated via interactions both with G-protein coupled seven transmembrane receptors and with the nuclear hormone receptor PPARgamma. Synthesis and biological activities of fluorinated analogues of LPA are still relatively unknown. In an effort to identify receptor-selective LPA analogues and to document in detail the structure-activity relationships of fluorinated LPA isosteres, we describe a series of monofluorinated LPA analogues in which either the sn-1 or the sn-2 hydroxy group was replaced by fluorine, or the bridging oxygen in the monophosphate was replaced by an alpha-monofluoromethylene (-CHF-) moiety. The sn-1 or sn-2 monofluorinated LPA analogues were enantiospecifically prepared from chiral protected glycerol synthons, and the alpha-monofluoromethylene-substituted LPA analogues were prepared from a racemic epoxide with use of a hydrolytic kinetic resolution. The sn-2 and sn-1 fluoro LPA analogues were unable to undergo acyl migration, effectively "freezing" them in the sn-1-O-acyl or sn-2-O-acyl forms, respectively. The alpha-monofluoromethylene LPA analogues were unique new nonhydrolyzable ligands with surprising enantiospecific and receptor-specific biological readouts, with one compound showing a 1000-fold higher activity than native LPA for one receptor subtype.  相似文献   

20.
Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号