首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,the ensemble empirical mode decomposition(EEMD) is applied to analyse accelerometer signals collected during normal human walking.First,the self-adaptive feature of EEMD is utilised to decompose the accelerometer signals,thus sifting out several intrinsic mode functions(IMFs) at disparate scales.Then,gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity.Compared with the method based on the empirical mode decomposition(EMD),the EEMD-based method has the following advantages:it remarkably improves the detection rate of peak values hidden in the original accelerometer signal,even when the signal is severely contaminated by the intermittent noises;this method effectively prevents the phenomenon of mode mixing found in the process of EMD.And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method.Meanwhile,the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions.The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.  相似文献   

2.
张学清  梁军 《物理学报》2013,62(5):50505-050505
针对风电功率时间序列的混沌特性,提出了一种基于集成经验模态分解(ensemble empirical mode decomposition, EEMD)-近似熵和回声状态网络(echo state network, ESN) 的风电功率混沌时间序列组合预测模型.首先为降低对风电功率局部分析的计算规模以及提高预测的准确性, 利用EEMD-近似熵将风电功率时间序列分解为一系列复杂度差异明显的风电子序列; 然后对各子序列分别建立ESN、经过高频分量正则化改进的EEMD-ESN模型和最小二乘支持向量机预测模型; 最后以某一风电场实际采集的数据为算例,仿真结果表明EEMD-ESN模型在训练速度和预测精度上优于最小二乘支持向量机模型,为实现风电功率短期预测的在线工程应用提供了新的有益参考.关键词:混沌时间序列风电预测集成经验模态分解近似熵  相似文献   

3.
姜涛  杨炜  郭隐彪  王健 《强激光与粒子束》2014,26(3):032003-119
对于大尺寸高精密光学元件,不仅要对光学元件表面低频面形精度和高频粗糙度进行控制,还需要严格限制中频误差,以保证其使用性能和稳定性。为了确定光学元件的不合格区域并指导其返修,引入经验模态分解(EMD)和Wigner分布(WVD)函数方法,通过理论分析确定该方法与功率谱密度函数间的关系,实现对光学元件表面中频误差的辨识与定位。实验结果表明:EMD-WVD方法不仅可以识别分布在实验光学元件表面15~27mm空间频率为0.1mm-1的中频误差,还可以减小多分量信号所引起的空间频率为1.0~1.5mm-1的交叉项干扰,提高中频误差辨识的准确率。  相似文献   

4.
对于大尺寸高精密光学元件,不仅要对光学元件表面低频面形精度和高频粗糙度进行控制,还需要严格限制中频误差,以保证其使用性能和稳定性。为了确定光学元件的不合格区域并指导其返修,引入经验模态分解(EMD)和Wigner分布(WVD)函数方法,通过理论分析确定该方法与功率谱密度函数间的关系,实现对光学元件表面中频误差的辨识与定位。实验结果表明:EMD-WVD方法不仅可以识别分布在实验光学元件表面15~27 mm空间频率为0.1 mm-1的中频误差,还可以减小多分量信号所引起的空间频率为1.0~1.5 mm-1的交叉项干扰,提高中频误差辨识的准确率。  相似文献   

5.
庄建军  宁新宝  邹鸣  孙飙  杨希 《物理学报》2008,57(5):2805-2811
利用两种基于熵的非线性复杂度测度:近似熵和样本熵,研究了专业射击运动员两种不同状态下(休息和练习赛)心率变异性信号的复杂度.计算结果表明:射击运动员休息时其心率变异性信号的熵值大于射击比赛时信号的熵值,这意味着运动员一旦进行射击比赛时,其心率变异性信号复杂度降低了,心跳变得更为规则了.为了更好地应用这两种基于熵的方法,进一步分析了算法中的两个重要影响因素:矢量匹配容差r和序列长度N对算法性能的影响.分析结果表明:只要参数选择在合适的范围内,近似熵和样本熵都能够正确地区分出两种不关键词:近似熵样本熵复杂度射击  相似文献   

6.
在复杂环境下齿轮箱信号往往会淹没在噪声信号中,特征向量难以提取。为了有效的进行故障诊断,提出了基于最大相关反褶积(MCKD)总体平均经验模态分解(EEMD)近似熵和双子支持向量机(TWSVM)的齿轮箱故障诊断方法。首先采用MCKD方法对强噪声信号进行滤波处理,在采用EEMD方法对齿轮箱信号进行分解,分解后得到本征模函数(IMF)分量进行近似熵求解,得到齿轮特征向量,最后将其输入到TWSVM分类器中进行故障识别。仿真实验表明,采用MCKD-EEMD方法能够有效的提取原始信号,与其他分类器相比,TWSVM的计算时间短,分类效果好等优点。  相似文献   

7.
张曹  陈珺  刘飞 《应用声学》2017,25(12):13-16
在复杂环境下齿轮箱信号往往会淹没在噪声信号中,特征向量难以提取;为了有效地进行故障诊断,提出了基于最大相关反褶积(MCKD)总体平均经验模态分解(EEMD)近似熵和双子支持向量机(TWSVM)的齿轮箱故障诊断方法;首先采用MCKD方法对强噪声信号进行滤波处理,在采用EEMD方法对齿轮箱信号进行分解,分解后得到本征模函数(IMF)分量进行近似熵求解,得到齿轮特征向量,最后将其输入到TWSVM分类器中进行故障识别;仿真实验表明,采用MCKD-EEMD方法能够有效地提取原始信号,与其他分类器相比,TWSVM的计算时间短,分类效果好等优点。  相似文献   

8.
摘要:针对光伏并网逆变器电路中故障信号的非线性、非平稳特点,提出一种基于经验模态分解(EMD)和样本熵(SampEn)的故障诊断方法。首先,利用经验模态分解对逆变器的三相输出电压进行分解,得到有限个本征模式分量(IMF),从中选取包含故障主要信息的前几个本征模式分量提取故障信息。然后,计算本征模式分量的样本熵,从而得到用于故障诊断的特征向量;最后,将逆变器开路故障进行分类和编码,将故障特征向量输入BP神经网络进行模式识别,从而达到故障诊断的目的。在Matlab环境下对光伏并网逆变器的故障诊断进行了实验,实验结果证明了文中方法能实现对光伏并网逆变器的故障诊断,且与小波包变换相比,该方法具有诊断效率高和准确度高等特点。  相似文献   

9.
利用排列熵检测近40年华北地区气温突变的研究   总被引:1,自引:0,他引:1  
侯威  封国林  董文杰  李建平 《物理学报》2006,55(5):2663-2668
运用一种新的动力学突变检测方法——排列熵(permutation entropy,PE)算法,计算并分析了中国华北地区52个站点1960年—2000年逐日平均气温资料的排列熵演化情况,发现中国华北地区气温在20世纪70年代中期、80年代初均发生了较大突变;进一步用经验模态分解(empirical mode decomposition,EMD)方法对排列熵序列进行逐级平稳化处理,结果发现这一地区的气温突变与准10年这一年代际时间尺度的周期变率密切相关,其原因与太阳黑子活动有着密切联系. 关键词:华北突变排列熵算法经验模态分解  相似文献   

10.
    
Approximate and sample entropies are acclaimed tools for quantifying the regularity and unpredictability of time series. This paper analyses the causes of their inconsistencies. It is shown that the major problem is a coarse quantization of matching probabilities, causing a large error between their estimated and true values. Error distribution is symmetric, so in sample entropy, where matching probabilities are directly summed, errors cancel each other. In approximate entropy, errors are accumulating, as sums involve logarithms of matching probabilities. Increasing the time series length increases the number of quantization levels, and errors in entropy disappear both in approximate and in sample entropies. The distribution of time series also affects the errors. If it is asymmetric, the matching probabilities are asymmetric as well, so the matching probability errors cease to be mutually canceled and cause a persistent entropy error. Despite the accepted opinion, the influence of self-matching is marginal as it just shifts the error distribution along the error axis by the matching probability quant. Artificial lengthening the time series by interpolation, on the other hand, induces large error as interpolated samples are statistically dependent and destroy the level of unpredictability that is inherent to the original signal.  相似文献   

11.
    
Compared to other targets, it is more difficult to detect infrared small targets due to several aspects such as the low signal to noise ratio, low contrast, small size, the lack of shape and texture information of the targets, especially under complex background. In this paper, a novel infrared small target detection method based on peer group filter (PGF), bi-dimensional empirical mode decomposition (BEMD) and local inverse entropy (LIE) is proposed to overcome these difficulties. The PGF is implemented to remove the noise and improve the signal-to-noise ratio of the initial image. Our proposed BEMD algorithm is able to estimate the background effectively and get the target image by removing the background from the original image and segmenting the Intrinsic Mode Functions (IMFs) making use of the local inverse entropy. Experimental results demonstrate that the novel method can extract the small targets validly and accurately.  相似文献   

12.
    
The global economy is under great shock again in 2020 due to the COVID-19 pandemic; it has not been long since the global financial crisis in 2008. Therefore, we investigate the evolution of the complexity of the cryptocurrency market and analyze the characteristics from the past bull market in 2017 to the present the COVID-19 pandemic. To confirm the evolutionary complexity of the cryptocurrency market, three general complexity analyses based on nonlinear measures were used: approximate entropy (ApEn), sample entropy (SampEn), and Lempel-Ziv complexity (LZ). We analyzed the market complexity/unpredictability for 43 cryptocurrency prices that have been trading until recently. In addition, three non-parametric tests suitable for non-normal distribution comparison were used to cross-check quantitatively. Finally, using the sliding time window analysis, we observed the change in the complexity of the cryptocurrency market according to events such as the COVID-19 pandemic and vaccination. This study is the first to confirm the complexity/unpredictability of the cryptocurrency market from the bull market to the COVID-19 pandemic outbreak. We find that ApEn, SampEn, and LZ complexity metrics of all markets could not generalize the COVID-19 effect of the complexity due to different patterns. However, market unpredictability is increasing by the ongoing health crisis.  相似文献   

13.
乙醇含量拉曼光谱检测中,拉曼光谱信号中的各种噪声及光谱荧光造成的基线漂移和样品池背景等,影响了校正模型的预测精度。利用总体平均经验模态分解,将光谱信号分解成若干无模态混叠的内在模式分量,根据排列熵的信号随机性检测判据判断出代表背景信息和噪声信息的内在模式分量,将其置零即可同时消除拉曼光谱中的噪声与背景。将总体平均经验模态分解与排列熵相结合的预处理方法应用于乙醇含量的拉曼光谱检测中,并与小波变换和平均平滑滤波做了对比。实验结果表明:应用总体平均经验模态分解与排列熵相结合的方法能够有效的同时消除乙醇含量拉曼光谱检测中的噪声和背景信息,提高校正模型的预测精度,且使用简便,无需参数设置,对乙醇含量拉曼光谱检测具有实用价值。  相似文献   

14.
    
Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can improve the survival rate and the quality of patient life. However, imaging detection and needle biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also do great harm to the human body. Since the changes in a patient’s health status will cause changes in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers were taken as research objects. The difference of the entropies of serum protein marker sequences in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was established for the purpose of improving the accuracy of cancer recognition. The results showed that there were significant differences in entropy of different cancer patients, and the complexity of serum protein markers in normal people was higher than that in cancer patients. Although the dataset was rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances, and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and 0.92, respectively. This study has certain theoretical and practical significance for cancer prediction and clinical application and can also provide a research basis for the intelligent medical treatment.  相似文献   

15.
在生物体拉曼光谱快速采集或低功率采集过程中,往往会获得低信噪比拉曼光谱。针对低信噪比光谱数据,提出应用补充总体经验模态方法(CEEMD)分解拉曼光谱,并且依据特征模态分量的归一化排列熵值(NPE)按比例扣除噪声成分的方法,称为局部补充总体均值经验模分解方法(LCEEMD)。LCEEMD方法不仅解决了经验模态(EMD)分解中高频信号与噪声的模态混叠问题,还有效降低了总体经验模态分解法(EEMD)中的残留噪声。仿真数据实验显示,LCEEMD方法在处理10db信噪比模拟光谱时获得了39.615 0 db信噪比,0.001 17标准差和0.999 9相关系数。在人体皮肤拉曼光谱试验中,LCEEMD方法滤波后数据准确呈现出角质层脂质酰胺I带激发拉曼强谱峰以及甘油三酸酯中(CO)酯微弱谱峰。在水稻叶片可溶性糖定量预测模型中,LCEEMD方法取得了0.871 7预测相关系数和0.912 0预测标准误差,优于EMD和EEMD软阈值去噪(0.511 4,1.647 8和0.638 2,1.508 8)。LCEEMD方法实施过程中,根据去噪性能指标反馈调整归一化排列熵阈值,直至获得最佳去噪效果,滤波过程无需参数设置,可以自适应实现。  相似文献   

16.
李鹏  刘澄玉  李丽萍  纪丽珍  于守元  刘常春 《物理学报》2013,62(12):120512-120512
多尺度多变量样本熵评价同步多通道数据的多变量复杂度, 是非线性动态相互关系的一种反映, 但其统计稳定性差, 且不适用于非线性非平稳信号. 研究利用模糊隶属度函数代替模式相似判断的硬阈值准则, 并分析模糊隶属度函数形式的影响; 研究利用多变量经验模态分解算法进行多尺度化, 并对比其处理效果. 仿真试验表明, 模糊隶属度函数的引入可以有效提高算法的统计稳定性, 所构造的物理模糊隶属度函数的性能最为显著; 基于多变量经验模态分解算法的多尺度化过程可更有效地捕获信号的不同尺度成分, 从而更敏感地区分具有不同复杂度的信号. 对临床试验数据的分析支持以上结论, 且结果提示随着年龄增加或心脏疾病的发生, 心率变异性和心脏舒张间期变异性的多变量复杂度以不同的方式降低: 年龄增加会使低尺度熵值降低, 表示近程相关性的丢失; 而心脏疾病会同时影响各个尺度的熵值, 即同时丢失了近程和长时相关性. 该结论可用于指导心血管疾病的无创预警研究.关键词:多变量复杂度多尺度多变量模糊熵物理模糊隶属度函数多变量经验模态分解  相似文献   

17.
基于经验模式分解的混沌干扰下谐波信号的提取方法   总被引:2,自引:0,他引:2  
李鸿光  孟光 《物理学报》2004,53(7):2069-2073
由混沌信号和谐波信号组合而成的复杂信号的分离方法一直受到关注.利用经验模式分解方法,依据任何信号由不同的固有简单振动模态组成的概念,将由混沌信号和谐波信号组合而成的复杂信号分离为不同的内在模态函数,并从中分解出谐波信号.通过利用Duffing方程产生的混沌信号进行的仿真实验,结果都表明该方法在一定参数范围内非常有效.关键词:经验模式分解混沌信号处理  相似文献   

18.
    
The early fault diagnosis of rolling bearings has always been a difficult problem due to the interference of strong noise. This paper proposes a new method of early fault diagnosis for rolling bearings with entropy participation. First, a new signal decomposition method is proposed in this paper: intrinsic time-scale decomposition based on time-varying filtering. It is introduced into the framework of complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN). Compared with traditional intrinsic time-scale decomposition, intrinsic time-scale decomposition based on time-varying filtering can improve frequency-separation performance. It has strong robustness in the presence of noise interference. However, decomposition parameters (the bandwidth threshold and B-spline order) have significant impacts on the decomposition results of this method, and they need to be artificially set. Aiming to address this problem, this paper proposes rolling-bearing fault diagnosis optimization based on an improved coyote optimization algorithm (COA). First, the minimal generalized refined composite multiscale sample entropy parameter was used as the objective function. Through the improved COA algorithm, optimal intrinsic time-scale decomposition parameters based on time-varying filtering that match the input signal are obtained. By analyzing generalized refined composite multiscale sample entropy (GRCMSE), whether the mode component is dominated by the fault signal is determined. The signal is reconstructed and decomposed again. Finally, the mode component with the highest energy in the central frequency band is selected for envelope spectrum variation for fault diagnosis. Lastly, simulated and experimental signals were used to verify the effectiveness of the proposed method.  相似文献   

19.
混凝土的强散射特性限制了其中缺陷声波成像的分辨率。本文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而提高成像算法对混凝土缺陷间散射波互干扰的鲁棒性。通过设置对比试验,研究了不同缺陷混凝土结构中该信号处理方式对于成像结果的影响。实验结果表明,该方法对于弱散射及散射干扰具有更好的鲁棒性,相比基于原始数据成像方法能够更好的还原混凝土内部结构。  相似文献   

20.
杨孝敬  杨阳  李淮周  钟宁 《物理学报》2016,65(21):218701-218701
提出采用模糊近似熵的方法对功能磁共振成像(functional magnetic resonance imaging,fMRI)复杂度量化分析,并与样本熵进行比较.采用的22个成年抑郁症患者中,11位男性,年龄在18—65岁之间.我们期望测量的静息态fMRI信号复杂度与Goldberger/Lipsitz模型一致,越健康、越稳健其生理表现的复杂度越大,且复杂度随年龄的增大而降低.全脑平均模糊近似熵与年龄之间差异性显著(r=-0.512,p0.001).相比之下,样本熵与年龄之间差异性不显著(r=-0.102,p=0.482).模糊近似熵同样与年龄相关脑区(额叶、顶叶、边缘系统、颞叶、小脑顶叶)之间差异性显著(p0.05),样本熵与年龄相关脑区之间差异性不显著性.这些结果与Goldberger/Lipsitz模型一致,说明采用模糊近似熵分析fMRI数据复杂度是一个有效的新方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号