首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The wavelet transform method originated by Wei et al. (2002) [19] is an effective tool for enhancing the transverse stability of the synchronous manifold of a coupled chaotic system. Much of the theoretical study on this matter is centered on networks that are symmetrically coupled. However, in real applications, the coupling topology of a network is often asymmetric; see Belykh et al. (2006)  [23], [24], Chavez et al. (2005)  [25], Hwang et al. (2005)  [26], Juang et al. (2007)  [17], and Wu (2003)  [13]. In this work, a certain type of asymmetric sparse connection topology for networks of coupled chaotic systems is presented. Moreover, our work here represents the first step in understanding how to actually control the stability of global synchronization from dynamical chaos for asymmetrically connected networks of coupled chaotic systems via the wavelet transform method. In particular, we obtain the following results. First, it is shown that the lower bound for achieving synchrony of the coupled chaotic system with the wavelet transform method is independent of the number of nodes. Second, we demonstrate that the wavelet transform method as applied to networks of coupled chaotic systems is even more effective and controllable for asymmetric coupling schemes as compared to the symmetric cases.  相似文献   

2.
The problem of decentralized iterative learning control for a class of large scale interconnected dynamical systems is considered. In this paper, it is assumed that the considered large scale dynamical systems are linear time-varying, and the interconnections between each subsystem are unknown. For such a class of uncertain large scale interconnected dynamical systems, a method is presented whereby a class of decentralized local iterative learning control schemes is constructed. It is also shown that under some given conditions, the constructed decentralized local iterative learning controllers can guarantee the asymptotic convergence of the local output error between the given desired local output and the actual local output of each subsystem through the iterative learning process. Finally, as a numerical example, the system coupled by two inverted pendulums is given to illustrate the application of the proposed decentralized iterative learning control schemes.  相似文献   

3.
In this paper, some coupled retarded systems on networks (CRSNs) are studied. Applying the idea of Razumikhin method and Mirchhoff’s matrix tree theorem, the sufficient conditions for global exponential stability of the CRSNs are obtained. Finally, an example of coupled retarded oscillator system on networks is given to illustrate the advantages of our results.  相似文献   

4.
This paper mainly focus on the exponential stabilization problem of coupled systems on networks with mixed time‐varying delays. Periodically intermittent control is used to control the coupled systems on networks with mixed time‐varying delays. Moreover, based on the graph theory and Lyapunov method, two different kinds of stabilization criteria are derived, which are in the form of Lyapunov‐type theorem and coefficients‐type criterion, respectively. These laws reveal that the stability has a close relationship with the topology structure of the networks. In addition, as a subsequent result, a decision theorem is also presented. It is straightforward to show the stability of original system can be determined by that of modified system with added absolute value into the coupling weighted‐value matrix. Finally, the feasibility and validity of the obtained results are demonstrated by several numerical simulation figures.  相似文献   

5.
In this work several models of fungal disease propagation are considered. They consist of reaction-diffusion systems coupled with ordinary differential equations with or without time delay as well as integro-differential system of equations. We derive some conditions that ensure the existence and uniqueness of travelling wave solutions for these various models. Our proof is based on a suitable re-formulation in the form of a nonlinear integral equation with measure kernel convolutions.  相似文献   

6.
Coastal flow involves surface wave propagation, current circulation, and seabed evolution, and its prediction remains challenging when they strongly interact with each other, especially during extreme events such as tsunami and storm surge. We propose a fully coupled method to simulate motion of wave-current-seabed systems and associated multiphysics phenomena. The wave action equation, the shallow water equations, and the Exner equation are respectively used for wave, current, and seabed morphology, and the discretization is based on a second-order, flux-limiter, finite difference scheme previously developed for current-seabed systems. The proposed method is tested with analytical solutions, laboratory measurements, and numerical solutions obtained with other schemes. Its advantages are demonstrated in capturing interplay among wave, current, and seabed; it has the capability of first-order upwind schemes to suppress artificial oscillations as well as the accuracy of second-order schemes in resolving flow structures.  相似文献   

7.
Coupled systems arise whenever there is a dynamic interaction between two or more functionally distinct components. The mathematical model for such a phenomenon consists of a system of coupled partial differential equations (PDE) in space and time, that has to be solved, either analytically or numerically, in order to describe or predict the response of the system under specific conditions. In spite of the natural accuracy of the analytical methods, they are less favourable due to their disability to treat more complex problems. Instead, different numerical schemes have been developed during the last decades, which are specialised to solve various coupled problems. These methods can be divided into two main categories, namely, monolithic and partitioned approaches. The main goal of this work is to study the general ideas behind monolithic and partitioned solution schemes for the pure differentially coupled systems. In the next step, the coupled problem of linear thermoelasticity is considered as benchmark example and the isothermal and isentropic operator-splitting schemes as two typical decoupling methods for this problem are presented. A canonical initial boundary-value problem has also been solved monolithically as well as by using the a.m. operator-splitting schemes and using the acquired results, the efficiency and stability of the methods are compared. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A new framework for development of order 3.0 weak Taylor scheme towards stochastic modeling and dynamics of coupled nonlinear systems is presented. The proposed method is derived by including third order multiple stochastic integral terms of Ito–Taylor expansion and developing them for a wide class of stochastic nonlinear systems. For computing the system responses of linear and a wide class of nonlinear structural systems, the use of lower order integration schemes is sufficient. But for highly non-linear stochastically driven systems like base isolated hysteretic systems and degrading stochastic systems the evaluation of higher order terms is necessary. Additionally, the use of higher order integration schemes for stochastic dynamics of higher dimensional nonlinear systems remains a challenge due to the arising mathematical complexities with the increase in the number of DOFs (degrees-of-freedom) which really necessitates the development of the proposed algorithm. The proposed algorithm is verified using a representative class of coupled nonlinear system in presence and absence of nonlinear degradation and hysteretic oscillators. The efficiency of the proposed numerical scheme over classical integration schemes is demonstrated through a practical engineering problem. Finally, an automated extension of the proposed algorithm is presented by generalizing it for a system of N-DOFs.  相似文献   

9.
In this article, the mean square exponential synchronization of a class of impulsive coupled neural networks with time‐varying delays and stochastic disturbances is investigated. The information transmission among the systems can be directed and lagged, that is, the coupling matrices are not needed to be symmetrical and there exist interconnection delays. The dynamical behaviors of the networks can be both continuous and discrete. Specially, the time‐varying delays are taken into consideration to describe the impulsive effects of the system. The control objective is that the trajectories of the salve system by designing suitable control schemes track the trajectories of the master system with impulsive effects. Consequently, sufficient criteria for guaranteeing the mean square exponential convergence of the two systems are obtained in view of Lyapunov stability theory, comparison principle, and mathematical induction. Finally, a numerical simulation is presented to show the verification of the main results in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 190–202, 2016  相似文献   

10.
In this work, we present two numerical methods to approximate solutions of systems of dissipative sine-Gordon equations that arise in the study of one-dimensional, semi-infinite arrays of Josephson junctions coupled through superconducting wires. Also, we present schemes for the total energy of such systems in association with the finite-difference schemes used to approximate the solutions. The proposed methods are conditionally stable techniques that yield consistent approximations not only in the domains of the solution and the total energy, but also in the approximation to the rate of change of energy with respect to time. The methods are employed in the estimation of the threshold at which nonlinear supratransmission takes place, in the presence of parameters such as internal and external damping, generalized mass, and generalized Josephson current. Our results are qualitatively in agreement with the corresponding problem in mechanical chains of coupled oscillators, under the presence of the same parameters.  相似文献   

11.
Protecting communication networks against failures is becoming increasingly important as they have become an integrated part of our society. Cable failures are fairly common, but it is unacceptable for a single cable failure to disconnect communication for more than a few seconds—hence protection schemes are employed. In contrast to manual intervention, automatic protection schemes such as shared backup path protection (SBPP) can recover from failure quickly and efficiently. SBPP is a simple but efficient protection scheme that can be implemented in backbone networks with technology available today. In SBPP backup paths are planned in advance for every failure scenario in order to recover from failures quickly and efficiently. Planning SBPP is an NP-hard optimization problem, and previous work confirms that it is time-consuming to solve the problem in practice using exact methods. We present heuristic algorithms and lower bound methods for the SBPP planning problem. Experimental results show that the heuristic algorithms are able to find good quality solutions in minutes. A solution gap of less than \(3.5~\%\) was achieved for 5 of 7 benchmark instances (and a gap of less than \(11~\%\) for the remaining instances.)  相似文献   

12.
Synchronization in an array of coupled identical nonlinear dynamical systems have attracted increasing attention from various fields of science and engineering. In this paper, we investigate the synchronization phenomenon in tree-like dynamical networks. Based on the LaSalle invariant principle, a simple and systematic adaptive control scheme with variable coupling strength is proposed for the synchronization of tree-like dynamical networks without any knowledge of the concrete structure of isolate system. This result indicates that synchronization can be achieved for strong enough coupling if there exists a system (located at the root of the tree) which directly or indirectly influences all other systems. Furthermore, the main result is applied to several Lorenz chaotic systems coupled by a tree. And numerical simulations are also given to show the effectiveness of the proposed synchronization method.  相似文献   

13.
In this paper, we investigate the reliability of a type of 1-for-2 shared protection systems. The 1-for-2 shared protection system is the most basic fault-tolerant configuration with shared backup units. We assume that there are two working units each serving a single user and one shared protection (spare) unit in the system. We also assume that the times to failure and to repair are subject to exponential and general distributions respectively. Under these assumptions, we derive the Laplace transform of the survival function (the cdf that the system will survive beyond a given time) for each user as well as the user-perceived Mean Time to First Failure (MTTFF) by combining the state transition analysis and the supplementary variable method. We also show the effect of the repair-time distribution, the failure rates and the repair rates of the units through the case study of small-sized two enterprises that share one spare device for backup purpose. The analysis reveals what is important and what should be done in order to improve the user-perceived reliability of shared protection systems.  相似文献   

14.
The aim of this paper is to investigate the existence and method of construction of solutions for a general class of strongly coupled elliptic systems by the method of upper and lower solutions and its associated monotone iterations. The existence problem is for nonquasimonotone functions arising in the system, while the monotone iterations require some mixed monotone property of these functions. Applications are given to three Lotka–Volterra model problems with cross-diffusion and self-diffusion which are some extensions of the classical competition, prey–predator, and cooperating ecological systems. The monotone iterative schemes lead to some true positive solutions of the competition system, and to quasisolutions of the prey–predator and cooperating systems. Also given are some sufficient conditions for the existence of a unique positive solution to each of the three model problems.  相似文献   

15.
In this paper, the authors study the propagation of singlarities for a semilinear hyperbolic‐parabolic coupled system, which comes from the model of thermoelasticity. Both of the Cauchy problem and the problem inside of a domain are considered. We obtain that the microlocal singularities of solutions to the semilinear hyperbolic‐parabolic coupled system are propagated along null bicharacteristics of the hyperbolic operator by using the theory of paradifferential operators. Furthermore, for the Cauchy problem of the semilinear coupled system, if the initial data have singularities at the origin, we prove that the solutions have the same order regularity with respect to spatial variables as in hyperbolic problems in the forward characteristic cone issuing from the origin, which improves the previous results for semilinear systems in thermoelasticity.  相似文献   

16.
Coupled systems on networks (CSNs) can be used to model many real systems, such as food webs, ecosystems, metabolic pathways, the Internet, World Wide Web, social networks, and global economic markets. This paper is devoted to investigation of the stability problem for some stochastic coupled reaction–diffusion systems on networks (SCRDSNs). A systematic method for constructing global Lyapunov function for these SCRDSNs is provided by using graph theory. The stochastic stability, asymptotically stochastic stability and globally asymptotically stochastic stability of the systems are investigated. The derived results are less conservative than the results recently presented in Luo and Zhang [Q. Luo, Y. Zhang, Almost sure exponential stability of stochastic reaction diffusion systems. Non-linear Analysis: Theory, Methods & Applications 71(12) (2009) e487–e493]. In fact, the system discussed in Q. Luo and Y. Zhang [Q. Luo, Y. Zhang, Almost sure exponential stability of stochastic reaction diffusion systems. Non-linear Analysis: Theory, Methods & Applications 71(12) (2009) e487–e493] is a special case of ours. Moreover, our novel stability principles have a close relation to the topological property of the networks. Our new method which constructs a relation between the stability criteria of a CSN and some topology property of the network, can help analyzing the stability of the complex networks by using the Lyapunov functional method.  相似文献   

17.
Coupled nonlinear Schrödinger systems describe some physical phenomena such as the propagation in birefringent optical fibers, Kerr-like photorefractive media in optics and Bose-Einstein condensates. In this paper, we study the existence of concentrating solutions of a singularly perturbed coupled nonlinear Schrödinger system, in presence of potentials. We show how the location of the concentration points depends strictly on the potentials.  相似文献   

18.
In this study, two manufacturing systems, a kanban-controlled system and a multi-stage, multi-server production line in a diamond tool production system, are optimized utilizing neural network metamodels (tst_NNM) trained via tabu search (TS) which was developed previously by the authors. The most widely used training algorithm for neural networks has been back propagation which is based on a gradient technique that requires significant computational effort. To deal with the major shortcomings of back propagation (BP) such as the tendency to converge to a local optimal and a slow convergence rate, the TS metaheuristic method is used for the training of artificial neural networks to improve the performance of the metamodelling approach. The metamodels are analysed based on their ability to predict simulation results versus traditional neural network metamodels that have been trained by BP algorithm (bp_NNM). Computational results show that tst_NNM is superior to bp_NNM for both of the manufacturing systems.  相似文献   

19.
A general theory for coupled cell systems was formulated recently by I. Stewart, M. Golubitsky and their collaborators. In their theory, a coupled cell system is a network of interacting dynamical systems whose coupling architecture is expressed by a directed graph called a coupled cell network. An equivalence relation on cells in a regular network (a coupled cell network with identical nodes and identical edges) determines a new network called quotient network by identifying cells in the same equivalence class and determines a quotient system as well. In this paper we develop an idea of reducibility of bifurcations in coupled cell systems associated with regular networks. A bifurcation of equilibria from subspace where states of all cells are equal is called a synchrony-breaking bifurcation. We say that a synchrony-breaking steady-state bifurcation is reducible in a coupled cell system if any bifurcation branch for the system is lifted from those for some quotient system. First, we give the complete classification of codimension-one synchrony-breaking steady-state bifurcations in 1-input regular networks (where each cell receives only one edge). Second, we show that under a mild condition on the multiplicity of critical eigenvalues, codimension-one synchrony-breaking steady-state bifurcations in generic coupled cell systems associated with an n  -cell coupled cell network with DnDn symmetry, a regular network, is reducible for n>2n>2.  相似文献   

20.
In this article,we consider the global chaotic synchronization of general coupled neural networks,in which subsystems have both discrete and distributed delays.Stochastic perturbations between subsyste...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号