首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce the notion of a convex geometry extending the notion of a finite closure system with the anti-exchange property known in combinatorics. This notion becomes essential for the different embedding results in the class of join-semidistributive lattices. In particular, we prove that every finite join-semidistributive lattice can be embedded into a lattice SP(A) of algebraic subsets of a suitable algebraic lattice A. This latter construction, SP(A), is a key example of a convex geometry that plays an analogous role in hierarchy of join-semidistributive lattices as a lattice of equivalence relations does in the class of modular lattices. We give numerous examples of convex geometries that emerge in different branches of mathematics from geometry to graph theory. We also discuss the introduced notion of a strong convex geometry that might promise the development of rich structural theory of convex geometries.  相似文献   

2.
For a digraph D, let L(D) and S(D) denote its line digraph and subdivision digraph, respectively. The motivation of this paper is to solve the digraph equation L(S(D))=S(L(D)). We show that L(S(D)) and S(L(D)) are cospectral if and only if D and L(D) have the same number of arcs. Further, we characterize the situation that L(S(D)) and S(L(D)) are isomorphic. Our approach introduces the new notion, the proper image D* of a digraph D, and a new type of connectedness for digraphs. The concept D* plays an important role in the main result of this paper. It is also useful in other aspects of the study of line digraphs. For example, L(D) is connected if and only if D* is connected; L(D) is functional (contrafunctional) if and only if D* is functional (contrafunctional). Some related results are also presented.  相似文献   

3.
Let G be a finite abelian group of order n and Davenport constant D(G). Let S=0h(S)gGgvg(S)∈F(G) be a sequence with a maximal multiplicity h(S) attained by 0 and t=|S|?n+D(G)−1. Then 0∈k(S) for every 1?k?t+1−D(G). This is a refinement of the fundamental result of Gao [W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103].  相似文献   

4.
By X(n), n?1, we denote the n-th symmetric hyperspace of a metric space X as the space of non-empty finite subsets of X with at most n elements endowed with the Hausdorff metric. In this paper we shall describe the n-th symmetric hyperspace S1(n) as a compactification of an open cone over ΣDn−2, here Dn−2 is the higher-dimensional dunce hat introduced by Andersen, Marjanovi? and Schori (1993) [2] if n is even, and Dn−2 has the homotopy type of Sn−2 if n is odd (see Andersen et al. (1993) [2]). Then we can determine the homotopy type of S1(n) and detect several topological properties of S1(n).  相似文献   

5.
With each finite lattice L we associate a projectively embedded scheme V(L); as Hibi has shown, the lattice D is distributive if and only if V(D) is irreducible, in which case it is a toric variety. We first apply Birkhoff's structure theorem for finite distributive lattices to show that the orbit decomposition of V(D) gives a lattice isomorphic to the lattice of contractions of the bounded poset of join-irreducibles of D. Then we describe the singular locus of V(D) by applying some general theory of toric varieties to the fan dual to the order polytope of P: V(D) is nonsingular along an orbit closure if and only if each fibre of the corresponding contraction is a tree. Finally, we examine the local rings and associated graded rings of orbit closures in V(D). This leads to a second (self-contained) proof that the singular locus is as described, and a similar combinatorial criterion for the normal link of an orbit closure to be irreducible.  相似文献   

6.
Let X be an infinite dimensional real reflexive Banach space with dual space X and GX, open and bounded. Assume that X and X are locally uniformly convex. Let T:XD(T)→2X be maximal monotone and strongly quasibounded, S:XD(S)→X maximal monotone, and C:XD(C)→X strongly quasibounded w.r.t. S and such that it satisfies a generalized (S+)-condition w.r.t. S. Assume that D(S)=LD(T)∩D(C), where L is a dense subspace of X, and 0∈T(0),S(0)=0. A new topological degree theory is introduced for the sum T+S+C, with degree mapping d(T+S+C,G,0). The reason for this development is the creation of a useful tool for the study of a class of time-dependent problems involving three operators. This degree theory is based on a degree theory that was recently developed by Kartsatos and Skrypnik just for the single-valued sum S+C, as above.  相似文献   

7.
Motivated by a recent paper of G. Grätzer, a finite distributive lattice D is called fully principal congruence representable if for every subset Q of D containing 0, 1, and the set J(D) of nonzero join-irreducible elements of D, there exists a finite lattice L and an isomorphism from the congruence lattice of L onto D such that Q corresponds to the set of principal congruences of L under this isomorphism. A separate paper of the present author contains a necessary condition of full principal congruence representability: D should be planar with at most one join-reducible coatom. Here we prove that this condition is sufficient. Furthermore, even the automorphism group of L can arbitrarily be stipulated in this case. Also, we generalize a recent result of G. Grätzer on principal congruence representable subsets of a distributive lattice whose top element is join-irreducible by proving that the automorphism group of the lattice we construct can be arbitrary.  相似文献   

8.
Let G be a group, S a subgroup of G, and F a field of characteristic p. We denote the augmentation ideal of the group algebra FG by ω(G). The Zassenhaus-Jennings-Lazard series of G is defined by Dn(G)=G∩(1+ωn(G)). We give a constructive proof of a theorem of Quillen stating that the graded algebra associated with FG is isomorphic as an algebra to the enveloping algebra of the restricted Lie algebra associated with the Dn(G). We then extend a theorem of Jennings that provides a basis for the quotient ωn(G)/ωn+1(G) in terms of a basis of the restricted Lie algebra associated with the Dn(G). We shall use these theorems to prove the main results of this paper. For G a finite p-group and n a positive integer, we prove that G∩(1+ω(G)ωn(S))=Dn+1(S) and G∩(1+ω2(G)ωn(S))=Dn+2(S)Dn+1(SD2(G)). The analogous results for integral group rings of free groups have been previously obtained by Gruenberg, Hurley, and Sehgal.  相似文献   

9.
Let (S,∪) be a finite join-semilattice and (D, ∨, ∧) be a distributive lattice. Let ?:S→D be a map satisfying ?(x ∪ y) ? ?(x) ∧ ?(y) for each x and y in S. Then for any valuation v on D the following identity holds.
v?xυS f(x)=cυC(?1)l(c)v?xυcf(x)
where C is the set of all chains in S and l(c) denotes the length of a chain c. Also the theorem can be dualized.  相似文献   

10.
Let L be a finite pseudocomplemented lattice. Every interval [0, a] in L is pseudocomplemented, so by Glivenko’s theorem, the set S(a) of all pseudocomplements in [0, a] forms a boolean lattice. Let B i denote the finite boolean lattice with i atoms. We describe all sequences (s 0, s 1, . . . , s n ) of integers for which there exists a finite pseudocomplemented lattice L with s i = |{ aL | S(a) ? B i }|, for all i, and there is no aL with S(a) ? B n+1. This result settles a problem raised by the first author in 1971.  相似文献   

11.
G. Grätzer  E. T. Schmidt 《Order》1994,11(3):211-220
Thefunction lattice L P is the lattice of all isotone maps from a posetP into a latticeL.D. Duffus, B. Jónsson, and I. Rival proved in 1978 that for afinite poset P, the congruence lattice ofL P is a direct power of the congruence lattice ofL; the exponent is |P|.This result fails for infiniteP. However, utilizing a generalization of theL P construction, theL[D] construction (the extension ofL byD, whereD is a bounded distributive lattice), the second author proved in 1979 that ConL[D] is isomorphic to (ConL) [ConD] for afinite lattice L.In this paper we prove that the isomorphism ConL[D](ConL)[ConD] holds for a latticeL and a bounded distributive latticeD iff either ConL orD is finite.The research of the first author was supported by the NSERC of Canada.The research of the second author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. 1903.  相似文献   

12.
A kernel N of a digraph D is an independent set of vertices of D such that for every wV(D)−N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel. If F is a set of arcs of D, a semikernel modulo F of D is an independent set of vertices S of D such that for every zV(D)−S for which there exists an (S,z)-arc of DF, there also exists an (z,S)-arc in D. In this work we show sufficient conditions for an infinite digraph to be a kernel perfect digraph, in terms of semikernel modulo F. As a consequence it is proved that symmetric infinite digraphs and bipartite infinite digraphs are kernel perfect digraphs. Also we give sufficient conditions for the following classes of infinite digraphs to be kernel perfect digraphs: transitive digraphs, quasi-transitive digraphs, right (or left)-pretransitive digraphs, the union of two right (or left)-pretransitive digraphs, the union of a right-pretransitive digraph with a left-pretransitive digraph, the union of two transitive digraphs, locally semicomplete digraphs and outward locally finite digraphs.  相似文献   

13.
The first part of this paper further refines the methodology for 2-descents on elliptic curves with rational 2-division points which was introduced in [J.-L. Colliot-Thélène, A.N. Skorobogatov, Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points, Invent. Math. 134 (1998) 579-650]. To describe the rest, let E(1) and E(2) be elliptic curves, D(1) and D(2) their respective 2-coverings, and X be the Kummer surface attached to D(1)×D(2). In the appendix we study the Brauer-Manin obstruction to the existence of rational points on X. In the second part of the paper, in which we further assume that the two elliptic curves have all their 2-division points rational, we obtain sufficient conditions for X to contain rational points; and we consider how these conditions are related to Brauer-Manin obstructions. This second part depends on the hypothesis that the relevent Tate-Shafarevich group is finite, but it does not require Schinzel's Hypothesis.  相似文献   

14.
We compute the representation-theoretic rank of a finite dimensional quasi-Hopf algebra H and of its quantum double D(H), within the rigid braided category of finite dimensional left D(H)-modules.  相似文献   

15.
Consider an algebraic semigroup S and its closed subscheme of idempotents, E(S). When S is commutative, we show that E(S) is finite and reduced; if in addition S is irreducible, then E(S) is contained in a smallest closed irreducible subsemigroup of S, and this subsemigroup is an affine toric variety. It follows that E(S) (viewed as a partially ordered set) is the set of faces of a rational polyhedral convex cone. On the other hand, when S is an irreducible algebraic monoid, we show that E(S) is smooth, and its connected components are conjugacy classes of the unit group.  相似文献   

16.
For an oriented graph D, let ID[u,v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For SV(D), let ID[S] denote the union of all ID[u,v] for all u,vS. Let [S]D denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with ID[S]=V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S]D=V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(G)=min{g(D):DO(G)}, g+(G)=max{g(D):DO(G)}, h(G)=min{h(D):DO(G)}, and h+(G)=max{h(D):DO(G)}. By the above definitions, h(G)≤g(G) and h+(G)≤g+(G). In the paper, we prove that g(G)<h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(G)−h(G)=a and g+(G)−h+(G)=b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262].  相似文献   

17.
Let D be a connected oriented graph. A set SV(D) is convex in D if, for every pair of vertices x,yS, the vertex set of every x-y geodesic (x-y shortest dipath) and y-x geodesic in D is contained in S. The convexity numbercon(D) of a nontrivial oriented graph D is the maximum cardinality of a proper convex set of D. Let G be a graph. We define that SC(G)={con(D):D is an orientation of G} and SSC(G)={con(D):D is a strongly connected orientation of G}. In the paper, we show that, for any n?4, 1?a?n-2, and a≠2, there exists a 2-connected graph G with n vertices such that SC(G)=SSC(G)={a,n-1} and there is no connected graph G of order n?3 with SSC(G)={n-1}. Then, we determine that SC(K3)={1,2}, SC(K4)={1,3}, SSC(K3)=SSC(K4)={1}, SC(K5)={1,3,4}, SC(K6)={1,3,4,5}, SSC(K5)=SSC(K6)={1,3}, SC(Kn)={1,3,5,6,…,n-1}, SSC(Kn)={1,3,5,6,…,n-2} for n?7. Finally, we prove that, for any integers n, m, and k with , 1?k?n-1, and k≠2,4, there exists a strongly connected oriented graph D with n vertices, m edges, and convexity number k.  相似文献   

18.
19.
For a K3 surface X and its bounded derived category of coherent sheaves D(X), we have the notion of stability conditions on D(X) in the sense of T. Bridgeland. In this paper, we show that the moduli stack of semistable objects in D(X) with a fixed numerical class and a phase is represented by an Artin stack of finite type over C. Then following D. Joyce's work, we introduce the invariants counting semistable objects in D(X), and show that the invariants are independent of a choice of a stability condition.  相似文献   

20.
A lattice automorphism of a group is defined to be an automorphism of its lattice of subgroups. For a large class of finite simple Chevalley groups, it is shown that every lattice automorphism is induced by a group automorphism. However, this does not hold for all finite simple Chevalley groups G, as is shown by explicit construction in the case G=PSL(3, q).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号