首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用三缺位Keggin型杂多酸[A-α-PW9O34]9-和[(FeШ(OH2)2)3(A-α-PW9O34)2]9-的四丁基铵盐做为催化剂,H2O2做为氧化剂催化环己烯氧化反应. 考察了反应时间、H2O2与环己烯的摩尔比,催化剂的用量等因素对反应结果的影响. 结果表明:在1, 2-二氯乙烷为10 mL,H2O2 (30 %)与环己烯的摩尔比为2,反应温度为35 oC,反应时间为6 h,[(C4H9)4N]9[A-α-PW9O34]为催化剂的条件下,环己烯氧化反应的转化率为55 %,主要产物是环氧环己烷,其选择性 ≥ 99 %;而以[(C4H9)4N]9[(FeШ(OH2)2)3(A-α-PW9O34)2]为催化剂时环己烯氧化反应的转化率17 %,主要产物是2-环己烯-1-酮,选择性 ≥ 99 %.  相似文献   

2.
Kim M  Picot A  Gabbaï FP 《Inorganic chemistry》2006,45(14):5600-5606
The reaction of the palladium(II) acetate derivative [Pd(NwedgeC)(OAc)]2 (NwedgeC = (NC5H4-2-C6H4(C2,N) or (2-(2-pyridyl)-phenyl-C,N)) with methylparathion and water in THF leads to the formation of [Pd(NwedgeC)(mu-SP(=O)(OCH3)2)]2 (1), which reacts with PPh3 in THF to afford mononuclear complex [Pd(NwedgeC)(SP(=O)(OCH3)2)(PPh3)] (2). Compounds 1 and 2 have been characterized by 1H, 13C, and 31P NMR spectroscopy; elemental analysis; and single-crystal X-ray diffraction. When dissolved in water, 1 serves as a precatalyst for the hydrolysis of methylparathion. Kinetic and spectroscopic studies suggest that compound 1 dissociates in aqueous solution to afford cationic diaqua complex [Pd(NwedgeC)(OH2)2]+ (A). At basic pH, A is converted into its deprotonated form [Pd(NwedgeC)(OH2)(OH)] (B), which dimerizes to afford a dinuclear complex, presumably [Pd(NwedgeC)(mu-OH)]2 (C). At pH 7, the reaction is first order in substrate and first order in palladium catalyst A, with k2 = 146 +/- 9 M(-1) s(-1) at 303 K. At more-basic pH, the reaction rate increases and shows an apparent half-order dependence in palladium catalyst. These observations suggest that the active form of the catalyst at basic pH is B, whose concentration is controlled by an equilibrium with inactive C. Analysis of the data obtained at pH 9 yields a dimer formation constant K(f) = [C]/[B]2 = (6.6 +/- 5.6) x 10(6) M(-1) and a second-order rate constant k2 of (8.6 +/- 3.6) x 10(3) M(-1) s(-1) at 298 K. The pH dependence of the reaction rate as well as a spectroscopic titration indicates that the pKa of A is in the 9.5-9.7 range. Determination of the activation parameters at both pH 7 and 9 suggests that catalysis occurs via an associative mechanism whose rate-determining step involves the substitution of a water ligand of A by a molecule of methylparathion at neutral pH and nucleophilic attack of the phosphorus center of methylparathion by a hydroxide ligand of B at basic pH.  相似文献   

3.
The successive addition of KCN and Ph3CCl to B(C6F4-C6F5-2)3 (PBB) affords triphenylmethyl salts of the [NC-PBB]- anion. By contrast, the analogous reaction with sodium dicyanamide followed by treatment with Ph(3)CCl leads to the zwitterionic aminoborane H2NB(C12F9)2C12F8, via nucleophilic attack on an o-F atom, together with CPh3[F-PBB]. Whereas treatment of [NC-PBB]- with either PBB or B(C6F5)3 fails to give isolable cyano-bridged diborates, the reaction of Me3SiNC-B(C6F5)3 with PBB in the presence of Ph3CCl affords [Ph3C][PBB-NC-B(C6F5)3]. Due to steric hindrance this anion is prone to borane dissociation. The longer linking group N(CN)2- gives the very voluminous anions [N[CNB(C6F5)3]2]- and [N(CN-PBB)2]-. A comparison of propylene polymerisations with rac-Me2Si(Ind)2ZrMe2 activated with the various boranes or trityl borates gives an anion-dependent activity sequence, in the order [NC-PBB]- < [MeB(C6F5)3]- < [MePBB]- approximately [PBB-NCB(C6F5)3]- approximately [N[CNB(C6F5)3]2]- < [F-PBB]-< [B(C6F5)4]- < [N(CN-PBB)2]-. The anion [N(CN-PBB)2]- gives a catalyst productivity about 2500 times higher than that of [NC-PBB]- and exceeds that of [B(C6F5)4]- based catalysts. The van der Waals volumes and surface areas of the anions have been calculated and provide a rationale for the observed reactivity trends in polymerisation reactions.  相似文献   

4.
Six 2-quinolones, which bear a terminal alkene linked by a three- or four-membered tether to carbon atom C4 of the quinolone, were synthesized and subjected to an intramolecular [2 + 2]-photocycloaddition. The reaction delivered the respective products in high yields (78-99%) and with good regioselectivity in favor of the straight isomer. If conducted in the presence of a chiral hydrogen-bonding template (2.5 equiv) at low temperature in toluene as the solvent, the reaction proceeded enantioselectively (83-94% ee). An organocatalytic reaction was achieved when employing a chiral hydrogen-bonding template with an attached sensitizing unit (benzophenone or xanthone). The xanthone-based organocatalyst proved to be superior as compared to the respective benzophenone. Closer inspection revealed that the reaction of 4-(pent-4-enyloxy)quinolone leading to a six-membered ring, annelated to the cyclobutane, was less enantioselective (up to 41% ee with 30 mol % catalyst) than the reaction of 4-(but-3-enyloxy)quinolone leading to a five-membered ring (90% ee with 5 mol % and 94% ee with 20 mol % catalyst). Photophysical data (emission spectra, laser flash photolysis experiments) proved that the latter photocycloaddition was significantly faster, supporting the idea that the dissociation of the substrate from the catalyst prior to the photocycloaddition is responsible for the decreased enantioselectivity. Under optimized conditions, employing 10 mol % of the xanthone-based organocatalyst at -25 °C in trifluorotoluene as the solvent, three of the other four substrates gave the intramolecular [2 + 2]-photocycloaddition products with high enantioselectivities (72-87% ee). In all catalyzed reactions, the yields based on conversion were moderate to good (40-93%).  相似文献   

5.
A dicyclohexyl(2-sulfo-9-(3-(4-sulfophenyl)propyl)-9H-fluoren-9-yl)phosphonium salt was synthesized in 64% overall yield in three steps from simple commercially available starting materials. The highly water-soluble catalyst obtained from the corresponding phosphine and [Na(2)PdCl(4)] enabled the Suzuki coupling of a broad variety of N- and S-heterocyclic substrates. Chloropyridines (-quinolines) and aryl chlorides were coupled with aryl-, pyridine- or indoleboronic acids in quantitative yields in water/n-butanol solvent mixtures in the presence of 0.005-0.05 mol % of Pd catalyst at 100 degrees C, chloropurines were quantitatively Suzuki coupled in the presence of 0.5 mol % of catalyst, and S-heterocyclic aryl chlorides and aryl- or 3-pyridylboronic acids required 0.01-0.05 mol % Pd catalyst for full conversion. The key to the high activity of the Pd-phosphine catalyst is the rational design of the reaction parameters (i.e., the presence of water in the reaction mixture, good solubility of reactants and catalyst in n-butanol/water (3:1), and the electron-rich and sterically demanding nature of the phosphine ligand).  相似文献   

6.
[reaction: see text] The microwave-promoted Suzuki coupling reaction of aryl chlorides with boronic acids performed in an aqueous media was studied using the air- and moisture-stable catalyst POPd2 (dihydrogen di-mu-chlorodichlorobis(di-tert-butylphosphinito-kappaP)dipalladate (2-)). This catalyst system under microwave conditions (150 degrees C, 15 min) provided coupled products with yields ranging from 64% to 99%. This method tolerated a variety of substituents and sterically hindered substrates.  相似文献   

7.
合成了系列均苯三甲酸氧钒配合物催化剂,并进行了FT-IR、紫外-可见漫反射光谱(DR UV-Vis)及TG表征。 系统考察了催化剂、不同种类的离子液体助剂、离子液体用量和反应时间等因素对异丁香酚氧化制备香草醛的影响。 结果表明,n(VO2+)∶n(BTC(均苯三甲酸根))=1∶1时制备的催化剂VO(BTC)-1性能较佳。 以VO(BTC)-1为催化剂、氯化1-十二烷基-3-甲基咪唑([C12mim]Cl)为助剂、丙酮为介质,当n(异丁香酚)∶n(H2O2)∶n([C12mim]Cl)=1∶2∶0.01时20 ℃反应24 h,异丁香酚可转化完全,香草醛收率达到87.2%。 基于离子液体介入的催化剂光谱特征及反应结果,推测[C12mim]Cl/VO(BTC)-1与H2O2形成了高效的氧化反应体系从而有利于异丁香酚的温和转化。  相似文献   

8.
赵佳  王赛赛  王柏林  岳玉学  金春晓  陆金跃  方正  庞祥雪  丰枫  郭伶伶  潘志彦  李小年 《催化学报》2021,42(2):334-346,后插48-后插53
聚氯乙烯(PVC)作为世界通用工程塑料之一,具有优异的物理、化学和机械性能,在工业、农业、建筑、包装、电力等行业中应用广泛.氯乙烯是生产聚氯乙烯的重要单体.氯乙烯的生产主要有电石法和乙烯法两种工艺路线,由于我国“贫油、富煤、少气”的资源现状,电石法产能占全部产能的83%以上.电石法生产氯乙烯的原理是在氯化汞催化剂存在下,将电石水解精制后的乙炔气与氯化氢加成直接合成氯乙烯.随着节能减排及环保要求的逐渐提高和国际涉汞公约的实施,开发新一代绿色无汞催化剂具有重要的战略意义.近年来,金基催化剂是无汞催化剂基础研究和技术开发中最重要的方向.在之前的工作中,我们课题组首先报道了负载离子液体-金催化剂体系(Au-SILP)在电石法生产氯乙烯工艺中的应用,并发现离子液体的存在可以显著提高金活性物种在载体表面的分散度和稳定其化学价态.在后续研究中,我们在负载离子液体-金催化体系中引入金属铜离子(Cu^2+),利用反应过程中Au-Cu之间的氧化还原循环,设计并制备了金属铜基配位离子液体,构建了负载离子液体-金-铜催化剂体系.铜离子的引入形成了一个催化剂自身维持氧化态的微环境,实现了被还原金物种的原位氧化再生.本文在上述研究基础上,利用配位离子液体[Bmim][N(CN)2]中[N(CN)2^–]阴离子和阳离子金之间的强配位作用,构建出比Au-Cl键更稳定的Au–N键,并通过X射线光电子能谱(XPS)、球差校正-扫描透射电镜(AC-STEM)和扩展X射线吸收精细结构(EXAFS)表征证明了Au以单原子状态存在于载体表面.制备的Au-N(CN)2/AC催化剂在乙炔氢氯化反应中表现出比Au-Cl/AC和Au/AC催化剂更高的稳定性和催化活性以及更短的诱导期.进一步表征分析发现,[N(CN)2^–]配体促进了阳离子金和配体之间的电子转移,提高了阳离子金的电子云密度,削弱了乙炔在阳离子金上的吸附强度,抑制了其还原,提高了催化剂的稳定性.更重要的是,与阳离子金配位的[N(CN)2^–]配体使得反应过程中的氯化氢在氮位点发生化学解离,促进了氯化氢活化,同时降低了反应能垒.对负载配位离子液体-金催化体系反应诱导期的分析结果表明,反应诱导期与反应物(乙炔、氯化氢)分子在离子液体层中的溶解度无关,而主要取决于催化剂中Au(Ⅲ)物种的含量和反应物分子在离子液体中的扩散速率.上述研究结果进一步深化了离子液体和活性金物种之间电子的作用机理,建立了负载离子液体-金催化剂体系对反应物的活化机制和反应机理,为进一步开发具有工业应用价值的乙炔氢氯化反应无汞催化剂提供了科学基础和参考.  相似文献   

9.
The alkylation of the Brookhart-Gibson {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)} FeCl2 precatalyst with 2 equiv of LiCH2Si(CH3)3 led to the isolation of several catalytically very active products depending on the reaction conditions. The expected dialkylated species {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2}(C5H3N)Fe(CH2SiMe3)2 (2) was indeed the major component of the reaction mixture. However, other species in which alkylation occurred at the pyridine ring ortho position, {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2-2-CH2SiMe3}(C5H3N)Fe(CH2SiMe3) (1), and at the imine C atom, {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC(CH3)(CH2 SiMe3)](C5H3N)}Fe(CH2SiMe3) (3), have also been isolated and fully characterized. In addition, deprotonation of the methyl-imino functions and formation of a new divalent Fe catalyst {[2,6-[2,6-(i-Pr)2PhN-C=(CH2)]2(C5H3N)}Fe(mu-Cl)Li(THF)3 (4) also occurred depending on the reaction conditions. In turn, the formation of 4 might trigger the reductive coupling of two units through the methyl-carbon wings. This process resulted in the one-electron reduction of the metal center, affording a dinuclear Fe(I) alkyl catalyst {[{[2,6-(i-Pr)2C6H5]N=C(CH3)}(C5H3N){[2,6-(i-Pr)26H5]N=CCH2}Fe(CH2SiMe3)]}2 (5). Different from other metal derivatives, complex 5 could not be prepared from the monodeprotonated version of the ligand. Its reaction with a mixture of FeCl2 and RLi afforded instead [{2,6-[2,6-(i-Pr)2PhN-C=(CH2)]2(C5H3N)}FeCH2Si(CH3)3][Li(THF)4] (6) which is also catalytically active. All of these high-spin species have been shown to have high catalytic activity for olefin polymerization, producing polymers of two distinct natures, depending on the formal oxidation state of the metal center.  相似文献   

10.
关喆  郑莹  焦书科 《高分子学报》2001,27(6):779-782
以Al(i Bu) 3 为活化剂 ,对球形MgCl2 负载的MAO Et[Ind]2 ZrCl2 催化剂用于乙烯淤浆聚合的动力学进行了研究 .确定了动力学控制条件后 ,测定了聚合反应级数和表观活化能 ,用动力学外推法计算出活性中心浓度和链增长速率常数 ,用扫描电镜观察了聚合过程中聚合物形态的变化 ,发现聚合是在催化剂的次级粒子上进行 ,催化剂粒子无明显破碎  相似文献   

11.
The chloro and azido complexes trans-[PdCl(4-C5NF4)(PiPr3)2] (3) and trans-[Pd(N3)(4-C5NF4)(PiPr3)2] (4) can be prepared by reaction of [PdF(4-C5NF4)(PiPr3)2] (2) with Et3SiCl or MeSiN3, respectively. In contrast, reactions of 2 with Ph3SiH or Me2FSiSiFMe2 give the products of reductive elimination 2,3,5,6-tetrafluoropyridine (5) or 4-(fluorodimethylsilyl)tetrafluoropyridine (6) as well as [Pd(PiPr3)2] (1). In a catalytic experiment, pentafluoropyridine can be converted with Ph3SiH into 5 in 62% yield, when 10% of 2 is employed as catalyst. Treatment of trans-[PdF(4-C5NF4)(PiPr3)2] (2) with Bu3SnCH=CH2 in THF at 50 degrees C results in the formation of [Pd(PiPr3)2] (1) and 4-vinyltetrafluoropyridine (7). Complex 2 is also active as a catalyst towards a Stille cross-coupling reaction of pentafluoropyridine with Bu3SnCH=CH2 to give 4-vinyltetrafluoropyridine (7) with a TON of 6. The molecular structure of the complex 3 has been determined by X-ray crystallography.  相似文献   

12.
An efficient cross-coupling reaction using a low cost carbon-supported palladium (Pd/C) catalyst for the synthesis of cross-conjugated compounds, diaryl[n]dendralenes, has been developed. The reaction of a propargylic biscarbonate with phenylboronic acid using Pd/C and phosphine ligand (S-Phos) gave 2,3-diphenyl[2]dendralene in high yield. We found that Pd/C was an effective catalyst for the synthesis of dialyl[n]dendralenes. The synthesis of various dendralenes was successfully achieved under the optimized conditions, giving dialyl [2] and [4] dendralenes in good yields.  相似文献   

13.
A mild, thermal Alder-ene reaction of enallenes has been developed. The allenic double bond acts as the "ene" and generates a carbon-carbon bond to an unactivated olefinic "enophile" in DMF at 120 degrees C to give [n.3.0] bicyclic systems (n = 3-5) in good yields. Except for a minor [2 + 2] cycloaddition byproduct, the reaction proceeded with complete atom economy, as there is no requirement of a catalyst or additional reactants, and no waste products are formed in the process.  相似文献   

14.
A series of relatively low-cost ionic liquids, based on the N-butyronitrile pyridinium cation [C(3)CNpy](+), designed to improve catalyst retention, have been prepared and evaluated in Suzuki and Stille coupling reactions. Depending on the nature of the anion, these salts react with palladium chloride to form [C(3)CNpy](2)[PdCl(4)] when the anion is Cl(-) and complexes of the formula [PdCl(2)(C(3)CNpy)(2)][anion](2) when the anion is PF(6)(-), BF(4)(-), or N(SO(2)CF(3))(2)(-). The solid-state structures of [C(3)CNpy]Cl and [C(3)CNpy](2)[PdCl(4)] have been established by single-crystal X-ray diffraction. The catalytic activity of these palladium complexes following immobilization in both N-butylpyridinium and nitrile-functionalized ionic liquids has been evaluated in Suzuki and Stille coupling reactions. All of the palladium complexes show good catalytic activity, but recycling and reuse is considerably superior in the nitrile-functionalized ionic liquid. Inductive coupled plasma spectroscopy reveals that the presence of the coordinating nitrile moiety in the ionic liquid leads to a significant decrease in palladium leaching relative to simple N-alkylpyridinium ionic liquids. Palladium nanoparticles have been identified as the active catalyst in the Stille reaction and were characterized using transmission electron microscopy.  相似文献   

15.
The mechanistic details of nickel-catalyzed reduction of CO(2) with catecholborane (HBcat) have been studied by DFT calculations. The nickel pincer hydride complex ({2,6-C(6)H(3)(OP(t)Bu(2))(2)}NiH = [Ni]H) has been shown to catalyze the sequential reduction from CO(2) to HCOOBcat, then to CH(2)O, and finally to CH(3)OBcat. Each process is accomplished by a two-step sequence at the nickel center: the insertion of a C═O bond into [Ni]H, followed by the reaction of the insertion product with HBcat. Calculations have predicted the difficulties of observing the possible intermediates such as [Ni]OCH(2)OBcat, [Ni]OBcat, and [Ni]OCH(3), based on the low kinetic barriers and favorable thermodynamics for the decomposition of [Ni]OCH(2)OBcat, as well as the reactions of [Ni]OBcat and [Ni]OCH(3) with HBcat. Compared to the uncatalyzed reactions of HBcat with CO(2), HCOOBcat, and CH(2)O, the nickel hydride catalyst accelerates the H(δ-) transfer by lowering the barriers by 30.1, 12.4, and 19.6 kcal/mol, respectively. In general, the catalytic role of the nickel hydride is similar to that of N-heterocyclic carbene (NHC) catalyst in the hydrosilylation of CO(2). However, the H(δ-) transfer mechanisms used by the two catalysts are completely different. The H(δ-) transfer catalyzed by [Ni]H can be described as hydrogen being shuttled from HBcat to nickel center and then to the C═O bond, and the catalyst changes its integrity during catalysis. In contrast, the NHC catalyst simply exerts an electronic influence to activate either the silane or CO(2), and the integrity of the catalyst remains intact throughout the catalytic cycle. The comparison between [Ni]H and Cp(2)Zr(H)Cl in the stoichiometric reduction of CO(2) has suggested that ligand sterics and metal electronic properties play critical roles in controlling the outcome of the reaction. A bridging methylene diolate complex has been previously observed in the zirconium system, whereas the analogous [Ni]OCH(2)O[Ni] is not a viable intermediate, both kinetically and thermodynamically. Replacing HBcat with PhSiH(3) in the nickel-catalyzed reduction of CO(2) results in a high kinetic barrier for the reaction of [Ni]OOCH with PhSiH(3). Switching silanes to HBcat in NHC-catalyzed reduction of CO(2) generates a very stable NHC adduct of HCOOBcat, which makes the release of NHC less favorable.  相似文献   

16.
A series of organonickel(II) complexes incorporating an amido phosphine ligand tethered with an amino pendant have been prepared and characterized. Deprotonation of N-(dimethylaminoethyl)-2-diphenylphosphinoaniline (H[PNN]) with one equivalent of n-BuLi in ethereal or hydrocarbon solutions at -35 °C generates cleanly dimeric {Li[PNN]}(2) as yellow crystals. The reaction of NiCl(2)(DME) with {Li[PNN]}(2) in THF at -35 °C affords green crystalline [PNN]NiCl. Treating [PNN]NiCl with NaX in acetone solutions gives [PNN]NiX (X = Br, I). Alkylation or arylation of [PNN]NiCl with appropriate Grignard reagents in THF at -35 °C produces red crystalline [PNN]NiR (R = Me, Et, i-Bu, n-hexyl, CH(2)Ph, Ph). The chloride complex [PNN]NiCl was found to be an active catalyst precursor for Kumada coupling reactions of PhX (X = I, Br, Cl) with aryl or alkyl Grignard reagents, including those containing β-hydrogen atoms. The X-ray structures of {Li[PNN]}(2) and [PNN]NiX (X = Cl, Br, Me, Et, n-hexyl) are reported.  相似文献   

17.
In the asymmetric hydrogenation of unfunctionalized olefins with cationic iridium-PHOX catalysts, the reaction kinetics and, as a consequence, catalyst activity and productivity depend heavily on the counterion. A strong decrease in the reaction rate is observed in the series [Al[OC(CF3)3]4]- >BArF- >[B(C6F5)4]- >PF6- >BF4- >CF3SO3-. With the first two anions, high rates, turnover frequencies (TOF >5000 h(-1) at 4 degrees C), and turnover numbers (TONs) of 2000-5000 are routinely achieved. The hexafluorophosphate salt reacts with lower rates, although they are still respectable; however, this salt suffers from deactivation during the reaction and extreme water-sensitivity, especially at low catalyst loading. Triflate and tetrafluoroborate almost completely inhibit the catalyst. In contrast to the hexafluorophosphate salt, catalysts with [Al[OC(CF3)3]4]-, BArF-, and [B(C6F5)4]- as counterions do not lose activity during the reaction and remain active, even after all the substrate has been consumed. In addition they are much less sensitive to moisture and, in general, rigorous exclusion of water and oxygen is not necessary. A first-order rate dependence on the hydrogen pressure was determined for the BArF- and the PF6- salts. At low catalyst loading, the rate dependence on catalyst concentration was also first order. The rate dependence on the alkene concentration was strikingly different for the two salts. While the reaction rate observed for the BArF- salt slightly decreased with increasing alkene concentration (rate order -0.2), a rate order of approximately 1 was determined for the corresponding hexafluorophosphate at low alkene concentrations.  相似文献   

18.
刘跃  刘佳雯  杨小震 《物理化学学报》2002,18(12):1068-1070
含氮氧配位原子的镍催化剂是一类新型催化剂.文章以配体为[NH=CH-CH=CH-O]的镍催化剂为模型,用密度泛函方法(DFT)在B3LYP/LANL2MB水平上研究了该类乙烯聚合催化的反应机理.计算结果表明,催化的反应过程中,中心原子镍最先形成带空位的四边形阳离子配合物,乙烯以垂直于催化剂平面的方式占据空位,然后旋转到催化剂平面内以利于插入反应的进行;插入反应发生后,在催化剂中Ni和β-C之间形成一种氢桥键,协助新空位的形成,实现链的增长.  相似文献   

19.
设计了由1,3-二(2,6-二甲基苯基)-2-四氢咪唑基-苯亚甲基-三苯基膦-二氯合钌(7)和吡啶反应生成无膦型金属钌卡宾化合物1,3-二(2,6-二甲苯基)-2-四氢咪唑基-苯亚甲基-2-吡啶基-二氯合钌(8),8作为高效催化剂用于丙烯腈和烯丙基苯的交叉交互置换反应.新化合物7,8经核磁共振氢谱、碳谱和高分辨率质谱予以证实.  相似文献   

20.
白晨曦  张文珍  何仁 《有机化学》2006,26(12):1700-1703
设计了由1,3-二(2,6-二甲基苯基)-2-四氢咪唑基-苯亚甲基-三苯基膦-二氯合钌(7)和吡啶反应生成无膦型金属钌卡宾化合物1,3-二(2,6-二甲苯基)-2-四氢咪唑基-苯亚甲基-2-吡啶基-二氯合钌(8), 8作为高效催化剂用于丙烯腈和烯丙基苯的交叉交互置换反应. 新化合物7, 8经核磁共振氢谱、碳谱和高分辨率质谱予以证实.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号