首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of noise on phase synchronization in small sets and larger populations of weakly coupled chaotic oscillators is explored. Both independent and correlated noise are found to enhance phase synchronization of two coupled chaotic oscillators below the synchronization threshold; this is in contrast to the behavior of two coupled periodic oscillators. This constructive effect of noise results from the interplay between noise and the locking features of unstable periodic orbits. We show that in a population of nonidentical chaotic oscillators, correlated noise enhances synchronization in the weak coupling region. The interplay between noise and weak coupling induces a collective motion in which the coherence is maximal at an optimal noise intensity. Both the noise-enhanced phase synchronization and the coherence resonance numerically observed in coupled chaotic R?ssler oscillators are verified experimentally with an array of chaotic electrochemical oscillators.  相似文献   

2.
We present an automatic control method for phase locking of regular and chaotic nonidentical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic Rössler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic Rössler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators.  相似文献   

3.
The time-scale synchronization of chaotic oscillations in two dissipatively coupled radiofrequency chaotic oscillators has been experimentally studied. The effect of noise on the efficiency of chaotic synchronization diagnostics is analyzed and a high stability of time-scale synchronization to noise in the coupling channel between the oscillators is shown.  相似文献   

4.
We report a general phenomenon concerning the effect of noise on phase synchronization in coupled chaotic oscillators: the average phase-synchronization time exhibits a nonmonotonic behavior with the noise amplitude. In particular, we find that the time exhibits a local minimum for relatively small noise amplitude but a local maximum for stronger noise. We provide numerical results, experimental evidence from coupled chaotic circuits, and a heuristic argument to establish the generality of this phenomenon.  相似文献   

5.
This paper deals with the chaotic oscillator synchronization. An approach to the synchronization of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization, and generalized synchronization are the particular cases of the synchronized behavior called "time-scale synchronization." The quantitative measure of chaotic oscillator synchronous behavior has been proposed. This approach has been applied for the coupled R?ssler systems and two coupled Chua's circuits.  相似文献   

6.
We consider chaotic oscillator synchronization and propose a new approach for detecting the synchronized behavior of chaotic oscillators. This approach is based on analysis of different time scales in the time series generated by coupled chaotic oscillators. We show that complete synchronization, phase synchronization, lag synchronization, and generalized synchronization are particular cases of the synchronized behavior called time-scale synchronization. A quantitative measure of chaotic oscillator synchronous behavior is proposed. This approach is applied to coupled Rössler systems.  相似文献   

7.
环形耦合Duffing振子间的同步突变   总被引:2,自引:0,他引:2       下载免费PDF全文
吴勇峰  张世平  孙金玮  Peter Rolfe 《物理学报》2011,60(2):20511-020511
以环形耦合Duffing振子系统为研究对象,分析了耦合振子间的同步演化过程.发现在弱耦合条件下,如果所有振子受到同一周期策动力的驱动,那么系统在经历倍周期分岔、混沌态、大尺度周期态的相变时,各振子的运动轨迹之间将出现由同步到不同步再到同步的两次突变现象.利用其中任何一次同步突变现象可以实现系统相变的快速判别,并由此补充了利用倍周期分岔与混沌态的这一相变对微弱周期信号进行检测的方法. 关键词: Duffing振子 同步突变 相变 微弱信号检测  相似文献   

8.
Transitions to Long-Resident States in Coupled Chaotic Oscillators   总被引:3,自引:0,他引:3       下载免费PDF全文
The behaviour of coupled chaotic oscillators before complete synchronization is investigated. Long-time residence of trajectories appears besides one of the saddle foci. The tendency that orbits of the two oscillators get closer becomes faster with the increasing coupling strength. The diffusion of phase difference between the two oscillators is first enhanced and then suppressed. There are exact correspondences among these phenomena. The mechanism of these correspondences is explored. These phenomena uncover the route to synchronization of coupled chaotic oscillators.  相似文献   

9.
The intermittent behavior at the boundary of phase synchronization in the presence of noise is investigated. It is shown that in a certain range of the coupling parameter and noise intensity, the system experiences the intermittency of needle’s eye- and ring-type intermittencies. The basic results are demonstrated with two unidirectionally coupled Ressler chaotic oscillators.  相似文献   

10.
Two types of phase synchronization (accordingly, two scenarios of breaking phase synchronization) between coupled stochastic oscillators are shown to exist depending on the discrepancy between the control parameters of interacting oscillators, as in the case of classical synchronization of periodic oscillators. If interacting stochastic oscillators are weakly detuned, the phase coherency of the attractors persists when phase synchronization breaks. Conversely, if the control parameters differ considerably, the chaotic attractor becomes phase-incoherent under the conditions of phase synchronization break.  相似文献   

11.
Chaotic synchronization of two electron-wave media with interacting counterpropagating waves and cubic phase nonlinearity (transverse-field backward-wave oscillators) is studied. Analysis is based on considering a continuous set of the phases of a chaotic signal. The parameters of chaotic synchronization in a system of unidirectionally coupled backward-wave oscillators are found, and the complex dynamics of establishing the chaotic synchronization conditions in an active medium is investigated.  相似文献   

12.
耦合混沌振子系统完全同步的动力学行为   总被引:3,自引:0,他引:3       下载免费PDF全文
以耦合Duffing振子为对象,研究了混沌系统进入完全同步态时的一些动力学行为. 在对称耦合情况下,随着耦合系数的变化系统达到各个混沌振子的相轨道完全相同的同步态——完全同步态. 通过计算Lyapunov指数表明,此时系统的前两个横向Lyapunov指数相等,同时系统之间的时间关联表现出明显的规律性. 关键词: Duffing振子 混沌同步 Lyapunov指数  相似文献   

13.
高心  虞厥邦 《中国物理》2005,14(8):1522-1525
近年来对分数阶系统的动力学研究得到了较为广泛的关注。本文研究了基于主-从耦合同步法的同步技术并实现了两个耦合的分数阶振荡器的混沌同步。仿真结果表明:在适当的耦合强度的调节下,该方法可实现两个耦合分数阶混沌振荡器的准确同步,且分数阶混沌振荡器的同步率明显慢于整数阶混沌振荡器的同步率;而耦合分数阶混沌振荡器在实现同步的过程中,随着阶数的提高,同步误差曲线变得平滑,这表明,系统阶数的提高改善了耦合混沌振荡器实现同步的平稳性。  相似文献   

14.
Two-dimensional (2D) lattices of diffusively coupled chaotic oscillators are studied. In previous work, it was shown that various cluster synchronization regimes exist when the oscillators are identical. Here, analytical and numerical studies allow us to conclude that these cluster synchronization regimes persist when the chaotic oscillators have slightly different parameters. In the analytical approach, the stability of almost-perfect synchronization regimes is proved via the Lyapunov function method for a wide class of systems, and the synchronization error is estimated. Examples include a 2D lattice of nonidentical Lorenz systems with scalar diffusive coupling. In the numerical study, it is shown that in lattices of Lorenz and Rossler systems the cluster synchronization regimes are stable and robust against up to 10%-15% parameter mismatch and against small noise.  相似文献   

15.
耦合混沌系统的相同步:从高维混沌到低维混沌   总被引:5,自引:0,他引:5       下载免费PDF全文
郑志刚  胡岗  周昌松  胡斑比 《物理学报》2000,49(12):2320-2327
混沌系统的相同步现象是近几年混沌同步研究的热点,它反映了混沌运动中的有序行为.用分岔树来研究耦合系统相同步的进程,并用Lyapunov指数谱来探讨系统动力学在相同步时从高维混沌向低维混沌过渡的进程.发现了从多个有理同步的时间交替到完全相同步的道路.还 发现了相同步中的混沌抑制及通过倍周期分岔向混沌同步的恢复.此外,研究表明,非对称 耦合可以大大加强耦合系统的相同步,这对实际应用有重要的意义. 关键词: 相同步 分岔树 李指数  相似文献   

16.
《Physics letters. A》1999,264(4):289-297
Chaotically-spiking dynamics of Hindmarsh–Rose neurons are discussed based on a flexible definition of phase for chaotic flow. The phase synchronization of two coupled chaotic neurons is in fact the spike synchronization. As a multiple time-scale model, the coupled HR neurons have quite different behaviors from the Rössler oscillators only having single time-scale mechanism. Using such a multiple time-scale model, the phase function can detect synchronization dynamics that cannot be distinguished by cross-correlation. Moreover, simulation results show that the Lyapunov exponents cannot be used as a definite criterion for the occurrence of chaotic phase synchronization for such a system. Evaluation of the phase function shows its utility in analyzing nonlinear neural systems.  相似文献   

17.
Lag synchronization is a recently discovered theoretical phenomenon where the dynamical variables of two coupled, nonidentical chaotic oscillators are synchronized with a time delay relative to each other. We investigate experimentally and numerically to what extent lag synchronization can be observed in physical systems where noise is inevitable. Our measurements and numerical computation suggest that lag synchronization is typically destroyed when the noise level is comparable to the amount of average system mismatch. At small noise levels, lag synchronization occurs in an intermittent fashion.  相似文献   

18.
We study the effects of mutual and external chaotic phase synchronization in ensembles of bursting oscillators. These oscillators (used for modeling neuronal dynamics) are essentially multiple time scale systems. We show that a transition to mutual phase synchronization takes place on the bursting time scale of globally coupled oscillators, while on the spiking time scale, they behave asynchronously. We also demonstrate the effect of the onset of external chaotic phase synchronization of the bursting behavior in the studied ensemble by a periodic driving applied to one arbitrarily taken neuron. We also propose an explanation of the mechanism behind this effect. We infer that the demonstrated phenomenon can be used efficiently for controlling bursting activity in neural ensembles.  相似文献   

19.
Synchronization of coupled oscillators exhibiting the coexistence of chaotic attractors is investigated, both numerically and experimentally. The route from the asynchronous motion to a completely synchronized state is characterized by the sequence of type-I and on-off intermittencies, intermittent phase synchronization, anticipated synchronization, and period-doubling phase synchronization.  相似文献   

20.
We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号