首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The forced monoharmonic bending vibrations and dissipative heating of a piezoelectric circular sandwich plate under monoharmonic mechanical and electrical loading are studied. The core layer is passive and viscoelastic. The face layers (actuators) are piezoelectric and oppositely polarized over the thickness. The plate is subjected to harmonic pressure and electrical potential. The viscoelastic behavior of the materials is described by complex moduli dependent on the temperature of heating. The coupled nonlinear problem is solved numerically. A numerical analysis demonstrates that the natural frequency, amplitude of vibrations, mechanical stresses, and temperature of dissipative heating can be controlled by changing the area and thickness of the actuator. It is shown that the temperature dependence of the complex moduli do not affect the electric potential applied to the actuator to compensate for the mechanical stress __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 1, pp. 79–89, January 2008.  相似文献   

3.
Thermal Effects in a Physically Nonlinear Cylinder under Impulsive Loading   总被引:1,自引:0,他引:1  
A coupled dynamic problem of thermomechanics is formulated based on a thermodynamically consistent modification of the Bodner-Partom model. This formulation is used to analyze the thermomechanical state of an aluminum cylinder under axial impulsive loading. The problem is solved by the finite-element method. Time integration is performed by the Crank-Nicholson scheme. Reversible and irreversible thermal changes are studied __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 8, pp. 66–71, August 2005.  相似文献   

4.
The geometry of flexible beams that are made of a physically nonlinear material and have a nearly linear load-deflection characteristic is identified for a wide range of monotonic and harmonic loads. The geometrically nonlinear beam equations are used. The physically nonlinear behavior of the material is described using a unified viscoplastic theory. A beam thickness criterion is formulated to provide nearly linear stiffness characteristic of the beam in the case of significant deflections and physically nonlinear deformations of the beam’s outer layers __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 85–92, February 2006.  相似文献   

5.
The bifurcation instability problem for rectangular plates made of physically nonlinear materials progressively damaged with increasing load is formulated and solved __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 79–88, September 2006.  相似文献   

6.
The bifurcation-instability problem for cylindrical shells made of physically nonlinear materials progressively damaged with increasing load is formulated and solved __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 56–66, October 2006.  相似文献   

7.
The structural theory of short-term damage is generalized to the case where the undamaged isotropic matrix of a fibrous composite with transversely isotropic fibers deforms nonlinearly, with microdamages occurring only in the matrix. The basis for this generalization is the stochastic elasticity equations for a fibrous composite with porous matrix whose skeleton deforms nonlinearly. Microvolumes of the matrix meet the Huber-Mises failure criterion. The damaged microvolume balance equation is derived for the physically nonlinear material of the matrix based on the properties of the ultimate microstrength distribution. Together with the equations relating macrostresses and macrostrains of the fibrous composite with porous nonlinear matrix, they constitute a closed-form system. This system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the dependences of macrostresses and microdamages on macrostrains are proposed. Uniaxial tension curves are plotted for a fibrous composite with linearly hardening matrix.Translated from Prikladnaya Mekhanika, Vol. 40, No. 10, pp. 88–97, October 2004.  相似文献   

8.
Nonstationary axisymetric waves in a disk excited by an impulsive radial load are analyzed numerically. The nonlinear deformation of the material is described by the Bodner-Partom model. The model parameters are derived from experimental data for samples subjected to tension followed by compression over a wide range of strain rates. The temporal and spatial characteristics of the wave process are studied. The influence of hardening on wave focusing and residual strain distribution is examined __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 108–115, November 2005.  相似文献   

9.
The dynamic thermomechanical problem for thin-walled laminated elements is formulated based on the geometrically linear theory and Kirchhoff–Love hypotheses. A simplified model of vibrations and dissipative heating of structurally inhomogeneous inelastic bodies under harmonic loading is used. The mechanical properties of materials are described using strain-dependent complex moduli. A nonstationary vibration-heating problem is solved. The dissipative function, derived from the stationary solution, is used to specify internal heat sources. The amplitude–frequency characteristics and spatial distributions of the main field variables are studied for a sandwich beam subjected to forced vibrations  相似文献   

10.
The structural theory of short-term microdamage is generalized to a laminated composite with a microdamageable matrix and physically nonlinear reinforcement. The basis for the generalization is the stochastic elasticity equations of a laminated composite with a porous matrix. Microvolumes in the matrix material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a laminated composite with porous matrix and physically nonlinear reinforcement constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different composite components. Algorithms for computing the microdamage-macrostrain relationships and deformation diagrams are developed. Uniaxial tension curves are plotted for a laminated composite with linearly hardening reinforcement __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 47–56, November 2005.  相似文献   

11.
The structural theory of short-term microdamage is generalized to a fibrous composite with a microdamageable matrix and physically nonlinear fibers. The basis for the generalization is the stochastic elasticity equations of a fibrous composite with a porous matrix. Microvolumes in the matrix material meet the Huber-Mises failure criterion. The damaged-microvolume balance equation for the matrix is derived. This equation and the equations relating macrostresses and macrostrains of a fibrous composite with porous matrix and physically nonlinear fibers constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage occurring in different components of the composite. Algorithms for computing the microdamage-macrostrain and macrostress-macrostrain relationships are developed. Uniaxial tension curves are plotted for a fibrous composite with linearly hardening fibers __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 1, pp. 38–47, January 2006.  相似文献   

12.
The structural theory of short-term damage is generalized to the case where the undamaged isotropic matrix of a fibrous composite with transversely isotropic reinforcement deforms nonlinearly under loads that induce a combined stress state, microdamages occurring in the matrix alone. The basis for this generalization is the stochastic elasticity equations for a fibrous composite with porous matrix whose skeleton deforms nonlinearly. The Huber-Mises failure criterion is used to describe the damage of microvolumes in the matrix. The damaged microvolume balance equation is derived for the physically nonlinear material of the matrix based on the properties of the distribution function for the statistically homogeneous random field of ultimate microstrength. Together with the macrostress-macrostrain relationship, they constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the dependences of macrostresses and microdamages on macrostrains are proposed. Stress-strain curves for a composite with a linearly hardened matrix under simultaneous normal and tangential loads are plotted. The effect of the volume fraction of reinforcement and tangential load on the curves is examined __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 3, pp. 48–59, March 2007.  相似文献   

13.
The structural theory of short-term damage is generalized to the case where the undamaged components of a particulate composite deform nonlinearly under loads that induce a compound stress state. The basis for this generalization is the stochastic elasticity equations for a particulate composite with porous components whose skeletons deform nonlinearly. Damage in a microvolume of the material is assumed to occur in accordance with the Huber-Mises failure criterion. Balance equations for damaged microvolume are derived for the physically nonlinear materials of the components. Together with the macrostress-macrostrain relationship for a particulate composite with porous nonlinear components, they constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the microdamage-macrostrain relationship and plotting stress-strain curves are proposed. Such curves are plotted for the case where the composite is subjected to a combination of normal and tangential loads, and microdamages occur in the linearly hardened matrix and do not in the linearly elastic inclusions. The stress-strain curves are examined depending on the volume fraction of inclusions and presence of tangential stresses __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 48–57, December, 2006.  相似文献   

14.
The non-linear response of laminated composite plates under thermomechanical loading is studied using the third-order shear deformation theory (TSDT) that includes classical and first-order shear deformation theories (CLPT and FSDT) as special cases. Geometric non-linearity in the von Kármán sense is considered. The temperature field is assumed to be uniform in the plate. Layers of magnetostrictive material, Terfenol-D, are used to actively control the center deflection. The negative velocity feedback control is used with the constant gain value. The effects of lamination scheme, magnitude of loading, layer material properties, and boundary conditions are studied under thermomechanical loading.  相似文献   

15.
The structural theory of short-term damage is generalized to the case where undamaged components of an N-component laminate deform nonlinearly under loads that induce a combined stress state. The basis for this generalization is the stochastic elasticity equations for an N-component laminate with porous components whose skeleton deforms nonlinearly. The Huber-Mises failure criterion is used to describe the damage of microvolumes in the composite. The damaged microvolume balance equation is derived for the physically nonlinear materials of the composite components. Together with the macrostress-macrostrain relationship, they constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage. For a two-component laminate, algorithms for calculating the microdamage-macrostrain relationship and plotting stress-strain curves are proposed. Stress-strain curves are also plotted for the case where microdamages occur in the linearly hardening component and do not in the linear elastic component under simultaneous normal and tangential loads. The effect of the volume fraction of reinforcement and tangential load on the curves is examined __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 62–72, April 2007.  相似文献   

16.
The paper deals with the coupled problem of flexural vibrations and dissipative heating of a viscoelastic ring plate with piezoceramic actuators under monoharmonic electromechanical loading. The temperature dependence of the complex characteristics of passive and piezoactive materials is taken into account. The coupled nonlinear problem of thermoviscoelasticity is solved by an iterative method. At each iteration, orthogonal discretization is used to integrate the equations of elasticity and an explicit finite-difference scheme is used to solve the heat-conduction equation with a nonlinear heat source. The effect of the dissipative heating temperature, boundary conditions, and the thickness and area of the actuator on the active damping of the forced vibrations of the plate under uniform transverse harmonic pressure is examined __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 99–108, February 2008.  相似文献   

17.
The Fourier method is used to find the analytical solutions to two-dimensional quasistatic problems of stationary polyharmonic vibrations and dissipative heating of a linearly viscoelastic cylinder. The influence of the cylinder thickness and the width of the loading area on the thermomechanical state of the cylinder is studied based on numerical data__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 2, pp. 23–32, February 2005.  相似文献   

18.
A coupled dynamic problem of thermoelectromechanics for thin-walled multilayer elements is formulated based on a geometrically nonlinear theory and the Kirchhoff–Love hypotheses. In the case of harmonic loading, an approximate formulation is given using the concept of complex moduli to characterize the cyclic properties of the material. The model problem on forced vibrations of sandwich beam, whose core layer is made of a passive physically nonlinear material, and face layers, of a viscoelastic piezoactive material, is considered as an example to demonstrate the possibility of damping the vibrations by applying harmonic voltage to the oppositely polarized layers of the beam. Substantiation is given for a linear control law with a complex coefficient for the electric potential, which provides damping of vibrations in the first symmetric mode at the linear and nonlinear stages of deformation. The stress–strain state and dissipative-heating temperature are studied  相似文献   

19.
An infinite elastic isotropic plate with an elliptical, physically nonlinear inclusion loaded at infinity by uniformly distributed moments is considered. Surface loads are absent. The problem of the stress-strain state of the plate is solved in a closed form. It is shown that, for reasonably general stress-strain relations for the inclusion, the bending-moment field (and the corresponding curvatures) in the inclusion is homogeneous. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 6, pp. 152–157, November–December, 2006.  相似文献   

20.
The paper examines the harmonic vibrations of an infinitely long thin cylindrical shell made of a nonlinear elastic piezoceramic material and subjected to periodic electric loading. Amplitude-frequency characteristics are plotted for different amplitudes of the load. Points of these characteristics are analyzed for stability. The transients occurring while harmonic vibrations attain the steady state are studied __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 101–106, April 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号