首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein–protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS3 because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS3 results in productive backbone fragmentation.  相似文献   

2.
The use of chemical crosslinking is an attractive tool that presents many advantages in the application of mass spectrometry to structural biology. The correct assignment of crosslinked peptides, however, is still a challenge because of the lack of detailed fragmentation studies on resultant species. In this work, the fragmentation patterns of intramolecular crosslinked peptides with disuccinimidyl suberate (DSS) has been devised by using a set of versatile, model peptides that resemble species found in crosslinking experiments with proteins. These peptides contain an acetylated N-terminus followed by a random sequence of residues containing two lysine residues separated by an arginine. After the crosslinking reaction, controlled trypsin digestion yields both intra- and intermolecular crosslinked peptides. In the present study we analyzed the fragmentation of matrix-assisted laser desorption/ionization-generated peptides crosslinked with DSS in which both lysines are found in the same peptide. Fragmentation starts in the linear moiety of the peptide, yielding regular b and y ions. Once it reaches the cyclic portion of the molecule, fragmentation was observed to occur either at the following peptide bond or at the peptide crosslinker amide bond. If the peptide crosslinker bond is cleaved, it fragments as a regular modified peptide, in which the DSS backbone remains attached to the first lysine. This fragmentation pattern resembles the fragmentation of modified peptides and may be identified by common automated search engines using DSS as a modification. If, on the other hand, fragmentation happens at the peptide bond itself, rearrangement of the last crosslinked lysine is observed and a product ion containing the crosslinker backbone and lysine (m/z 222) is formed. The detailed identification of fragment ions can help the development of softwares devoted to the MS/MS data analysis of crosslinked peptides.  相似文献   

3.
Chemical crosslinking combined with mass spectrometry is a useful tool for studying the topological organization of multiprotein interactions, but it is technically challenging to identify peptides involved in a crosslink using tandem mass spectrometry (MS/MS) due to the presence of product ions originating from both peptides within the same crosslink. We have previously developed a novel set of collision-induced dissociative chemical crosslinking reagents (CID-CXL reagents) that incorporate a labile bond within the linker which readily dissociates at a single site under low-energy collision-induced dissociation (CID) to enable independent isolation and sequencing of the crosslinked peptides by traditional MS/MS and database searching. Alternative low-energy CID events were developed within the in-source region by increasing the multipole DC offset voltage (ISCID) or within the ion trap by increasing the collisional excitation (ITCID). Both dissociation events, each having their unique advantages, occur without significant backbone fragmentation to the peptides, thus permitting subsequent CID to be applied to these distinct peptide ions for generation of suitable product ion spectra for database searching. Each approach was developed and applied to a chemical crosslinking study involving the N-terminal DNA-binding domain of AbrB (AbrBN), a transition-state regulator in Bacillus subtilis. A total of thirteen unique crosslinks were identified using the ITCID approach which represented a significant improvement over the eight unique crosslinks identified using the ISCID approach. The ability to segregate intrapeptide and interpeptide crosslinks using ITCID represents the first step towards high-throughput analysis of protein-protein crosslinks using our CID-CXL reagents.  相似文献   

4.
Protein citrullination is emerging as an important signaling mechanism that modulates a variety of biological processes. This protein modification constitutes only a 1 Da mass shift, and can be readily confused with other common protein modifications that yield an identical mass shift. In an attempt to develop a robust methodology for detection of protein citrullination sites, we analyzed synthetic citrulline-containing peptides by electrospray ionization tandem mass spectrometry. Collision-induced dissociation (CID) spectra revealed abundant neutral loss of 43 Da from citrullinated peptide precursor ions, which was reconciled by elimination of the HNCO moiety (isocyanic acid) from the citrulline ureido group. The elimination occurs readily in multiple charge states of precursor ions and also in b and y ions. HNCO loss in CID spectra provides a novel diagnostic marker for citrullination, and its utility was demonstrated by the discovery of Arg197 as the specific site of citrullination on nucleophosmin upon peptidylarginine deiminase 4 treatment.  相似文献   

5.
Electrostatic interactions play an important role in the formation of noncovalent complexes. Our previous work has highlighted the role of certain amino acid residues, such as arginine, glutamate, aspartate, and phosphorylated/sulfated residues, in the formation of salt bridges resulting in noncovalent complexes between peptides. Tandem mass spectrometry (MS) studies of these complexes using collision-induced dissociation (CID) have provided information on their relative stability. However, product-ion spectra produced by CID have been unable to assign specifically the site of interaction for the complex. In this work, tandem MS experiments were conducted on noncovalent complexes using both electron capture dissociation (ECD) and electron-transfer dissociation (ETD). The resulting spectra were dominated by intramolecular fragments of the complex with the electrostatic interaction site intact. Based upon these data, we were able to assign the binding site for the peptides forming the noncovalent complex.  相似文献   

6.
Nanospray and collisionally induced dissociation (CID) on a quadrupole/time-of-flight mass spectrometer were used to examine the complexes formed between the zinc ion binding protein metallothionein and a series of peptides related to glutathione. The objective of the study was to determine if CID could be used to distinguish complexes that are stabilized by co-chelation of a zinc ion from non-covalent complexes that were formed in some other way. Differences in the collision energy required for dissociation and, more importantly, differences in the distribution of zinc ions between the pairs of dissociation products suggest that mass spectrometry can provide qualitative information about the bimolecular chelation of metal ions. The potential application to zinc chelates is particularly important, since biological chelates do not provide signals directly detectable by NMR, M?ssbauer or other spectroscopies. The observations reported here also allowed a molecular mechanism to be proposed to explain the differences observed by others in the physiological interactions of reduced and oxidized glutathione with metallothionein.  相似文献   

7.
Chemical crosslinking of proteins combined with mass spectrometric analysis of the tryptic digest of the products shows considerable promise as a tool for interrogating structure and geometry of proteins and protein complexes. An impediment to the use of this tool has been the difficulty of distinguishing crosslinked peptide pairs from non-crosslinked peptides, and from the products of side reactions. We describe the use of a commercially available biotinylated crosslinking reagent, sulfo-SBED, that allows affinity-based enrichment of crosslinked species. An intramolecular crosslink is prepared using the peptide neurotensin as a model system. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra show the predicted crosslinking product, as well as several side products. Finally, we describe the optimized enrichment of biotinylated species, and reduction of non-specific binding, for a batch-mode affinity separation based on immobilized monomeric avidin.  相似文献   

8.
Chemical crosslinking in combination with mass spectrometry has matured into an alternative approach to derive low-resolution structural information of proteins and protein complexes. Yet, one of the major drawbacks of this strategy remains the lack of software that is able to handle the large MS datasets that are created after chemical crosslinking and enzymatic digestion of the crosslinking reaction mixtures. Here, we describe a software, termed StavroX, which has been specifically designed for analyzing highly complex crosslinking datasets. The StavroX software was evaluated for three diverse biological systems: (1) the complex between calmodulin and a peptide derived from Munc13, (2) an N-terminal ß-laminin fragment, and (3) the complex between guanylyl cyclase activating protein-2 and a peptide derived from retinal guanylyl cyclase. We show that the StavroX software is advantageous for analyzing crosslinked products due to its easy-to-use graphical user interface and the highly automated analysis of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data resulting in short times for analysis. StavroX is expected to give a further push to the chemical crosslinking approach as a routine technique for protein interaction studies.  相似文献   

9.
We propose a tandem mass spectrometry method that combines electron-transfer dissociation (ETD) with simultaneous collision-induced dissociation (CID), termed ETD/CID. This technique can provide more complete sequence coverage of peptide ions, especially those at lower charge states. A selected precursor ion is isolated and subjected to ETD. At the same time, a residual precursor ion is subjected to activation via CID. The specific residual precursor ion selected for activation will depend upon the charge state and m/z of the ETD precursor ion. Residual precursor ions, which include unreacted precursor ions and charge-reduced precursor ions (either by electron-transfer or proton transfer), are often abundant remainders in ETD-only reactions. Preliminary results demonstrate that during an ETD/CID experiment, b, y, c, and z-type ions can be produced in a single experiment and displayed in a single mass spectrum. While some peptides, especially doubly protonated ones, do not fragment well by ETD, ETD/CID alleviates this problem by acting in at least one of three ways: (1) the number of ETD fragment ions are enhanced by CID of residual precursor ions, (2) both ETD and CID-derived fragments are produced, or (3) predominantly CID-derived fragments are produced with little or no improvement in ETD-derived fragment ions. Two interesting scenarios are presented that display the flexibility of the ETD/CID method. For example, smaller peptides that show little response to ETD are fragmented preferentially by CID during the ETD/CID experiment. Conversely, larger peptides with higher charge states are fragmented primarily via ETD. Hence, ETD/CID appears to rely upon the fundamental reactivity of the analyte cations to provide the best fragmentation without implementing any additional logic or MS/MS experiments. In addition to the ETD/CID experiments, we describe a novel dual source interface for providing front-end ETD capabilities on a linear ion trap mass spectrometer.  相似文献   

10.
Nitrated tyrosines are easily converted into their aminotyrosine equivalents by a reduction step. We here show that this conversion can be exploited to readily discern 3-aminotyrosine peptides in a background of non-nitrated peptides. Furthermore, aminotyrosine peptides are more stable in single mass spectrometry (MS) mode rendering peptide mass maps easier to interpret. One significant caveat of both 3-nitrotyrosine and 3-aminotyrosine peptides is their lack of efficient fragmentation upon collision-induced dissociation (CID) which, in the case of the latter peptides, also produces unexpected, deviating isotopic patterns of fragment ions containing the aminotyrosine residue. The net result is that sequence database searching becomes daunting as the correct peptide is frequently missed since insufficient and/or inaccurate peptide fragments are used. We show that a simple acetylation step, blocking all amines (including aminotyrosine), produces peptides that undergo extensive backbone fragmentation by CID and are thus easily identifiable in databases. Our procedure is additionally illustrated by doubling the number of nitration events mapped in tetranitromethane-nitrated bovine serum albumin (BSA) as compared to a direct analysis of the nitrated peptides using the same amount of material. In conclusion, we here illustrate that this two-step process, heme-mediated reduction and acetylation, can be used for more efficient characterization of protein-bound nitrated tyrosines.  相似文献   

11.
A systematic study of the dissociation patterns of crosslinked peptides analyzed by tandem mass spectrometry is reported. A series of 11-mer peptides was designed around either a polyalanine or polyglycine scaffold with arginine at the C terminus. One or two lysine residues were included at various locations within the peptides to effect inter- or intra-molecular crosslinking, respectively. Crosslinked species were generated with four commonly used amine-specific chemical crosslinking reagents: disuccinimidyl suberate (DSS), disuccinimidyl tartarate (DST), dithiobis(succinimidylpropionate) (DSP), and disuccinimidyl glutarate (DSG). The influence of precursor charge state, location of crosslink, and specific crosslinking reagent on the MS/MS dissociation pattern was examined. Observed trends in the dissociation patterns obtained for these species will allow for improvements to software used in the automated interpretation of crosslinked peptide MS/MS data.  相似文献   

12.
Molecular radical cations have proven to be difficult to generate from aliphatic peptides under electrospray ionization mass spectrometry (ESI-MS) conditions. For a family of small aliphatic peptides GGX, where X = G, A, P, I, L and V, these cations have been generated by electrospraying a mixture of Cu.2+, 12-crown-4 and GGX in methanol/water. GGX.+ is readily formed from the collision-induced dissociation (CID) of [CuII(12-crown-4)(GGX)].2+. The formation of these aliphatic peptide radical ions from these complexes, in cases where it is not possible from the corresponding complexes involving a series of amine ligands instead of 12-crown-4, is likely due to the second ionization energy of the [CuI(12-crown-4)(GGX)]+ complex being higher than that of the corresponding [CuI(amine)(GGX)]+ complex. Using these 12-crown-4 complexes, GGI can be differentiated from the isomeric GGL by comparing the CID spectra of their [a3 + H].+ ions.  相似文献   

13.
丙烯酸乙酯/烯丙基缩水甘油醚共聚物的热可逆共价交联   总被引:1,自引:0,他引:1  
研究了双环戊二烯基二羧酸及其铵盐对丙烯酸乙酯 /烯丙基缩水甘油醚共聚物的交联反应 ,对比了二者的交联速度 .用DSC评价了它们的热可逆转化行为 .制得了热可逆部分达 79 7%的共价交联环氧型丙烯酸酯橡胶  相似文献   

14.
Covalent labeling along with mass spectrometry is finding more use as a means of studying the higher order structure of proteins and protein complexes. Diethylpyrocarbonate (DEPC) is an increasingly used reagent for these labeling experiments because it is capable of modifying multiple residues at the same time. Pinpointing DEPC-labeled sites on proteins is typically needed to obtain more resolved structural information, and tandem mass spectrometry after protein proteolysis is often used for this purpose. In this work, we demonstrate that in certain instances, scrambling of the DEPC label from one residue to another can occur during collision-induced dissociation (CID) of labeled peptide ions, resulting in ambiguity in label site identity. From a preliminary study of over 30 labeled peptides, we find that scrambling occurs in about 25% of the peptides and most commonly occurs when histidine residues are labeled. Moreover, this scrambling appears to occur more readily under non-mobile proton conditions, meaning that low charge-state peptide ions are more prone to this reaction. For all peptides, we find that scrambling does not occur during electron transfer dissociation, which suggests that this dissociation technique is a safe alternative to CID for correct label site identification. Graphical Abstract
?  相似文献   

15.
Protein identification is routinely accomplished by peptide sequencing using mass spectrometry (MS) after enzymatic digestion. Site-specific chemical modification may improve peptide ionization efficiency or sequence coverage in mass spectrometry. We report herein that amino group of lysine residue in peptides can be selectively modified by reaction with a peroxycarbonate and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID) in electrospray ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI) MS. Selective modification of lysine residue in peptides by our strategy can induce specific peptide cleavage at or near the lysine site. Studies using deuterated analogues of modified lysine indicate that fragmentation of the modified peptides involves apparent free-radical processes that lead to peptide chain fragmentation and side-chain loss. The formation of a-, c-, or z-types of ions in MS is reminiscent of the proposed free-radical mechanisms in low-energy electron capture dissociation (ECD) processes that may have better sequence coverage than that of the conventional CID method. This site-specific cleavage of peptides by free radical- promoted processes is feasible and such strategies may aid the protein sequencing analysis and have potential applications in top-down proteomics.  相似文献   

16.
Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA The study of isolated protein complexes has greatly benefited from recent advances in mass spectrometry instrumentation and quantitative, isotope labeling techniques. The comprehensive characterization of protein complex components and quantification of their relative abundance relies heavily upon maximizing protein and peptide sequence information obtained from MS and tandem MS studies. Recent work has shown that using a metalloendopeptidase, Lys-N, for proteomic analysis of biological protein mixtures produces complementary protein sequence information compared with trypsin digestion alone. Here, we have investigated the suitability of Lys-N proteolysis for use with MALDI mass spectrometry to characterize the yeast Arp2 complex and E. coli PAP I protein interactions. Although Lys-N digestion resulted in an average decrease in protein sequence coverage of ∼30% compared with trypsin digestion, CID analysis of singly-charged Lys-N peptides yielded a more extensive b-ions series compared with complementary tryptic peptides. Taking advantage of this improved fragmentation pattern, we utilized differential 15N/14N guanidination of Lys-N peptides and MALDI-MS/MS analysis to relatively quantify the changes in PAP I associations due to deletion of sprE, previously shown to regulate PAP I-dependent polyadenylation. Overall, this Lys-N/guanidination integrative approach is applicable for functional proteomic studies utilizing MALDI mass spectrometry analysis, as it provides an effective and economical mean for relative quantification of proteins in conjunction with increased sensitivity of detection and fragmentation efficiency.  相似文献   

17.
In a previous report (Young et al., Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5802-5806), we provided a proof-of-principle for fold recognition of proteins using a homobifunctional amine-specific chemical crosslinking reagent in combination with mass spectrometry analysis and homology modeling. In this current work, we propose a systematic nomenclature to describe the types of peptides that are generated after proteolysis of crosslinked proteins, their fragmentation by tandem mass spectrometry, and an automated algorithm for MS/MS spectral assignment called "MS2Assign." Several examples are provided from crosslinked peptides and proteins including HIV-integrase, cytochrome c, ribonuclease A, myoglobin, cytidine 5-monophosphate N-acetylneuraminic acid synthetase, and the peptide thymopentin. Tandem mass spectra were obtained from various crosslinked peptides using post source decay MALDI-TOF and collision induced dissociation on a quadrupole-TOF instrument, along with their automated interpretation using MS2Assign. A variety of possible outcomes are described and categorized according to the number of modified lysines and/or peptide chains involved, as well as the presence of singly modified (dead-end) lysine residues. In addition, the proteolysis and chromatographic conditions necessary for optimized crosslinked peptide recovery are presented.  相似文献   

18.
Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional activation in an orthogonal quadrupole time-of-flight electrospray ionization (Q-TOF ESI) mass spectrometer. These peptides contain a C-terminal receptor-binding sequence and an N-terminal nonbinding region. When the peptides form a receptor complex, the amide hydrogens of the interacting sequences are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity of this labeling was confirmed after pepsin proteolysis. CID of such deuterated peptides, [M + 2H](2+), yielded fragment ions (b- and y-ions) having a deuterium content that resemble the theoretical values calculated for 100% scrambling. Thus, complete randomization of all hydrogen atoms attached to nitrogen and oxygen occurs in the gaseous peptide ion prior to its dissociation.  相似文献   

19.
Unambiguous differentiation between isobaric sulfated and phosphorylated tyrosine residues (sTyr and pTyr) of proteins by mass spectrometry is challenging, even using high resolution mass spectrometers. Here we show that upon negative ion mode collision-induced dissociation (CID), pTyr- and sTyr-containing peptides exhibit entirely different modification-specific fragmentation patterns leading to a rapid discrimination between the isobaric covalent modifications using the tandem mass spectral data. This study reveals that the ratio between the relative abundances of [M-H-80](-) and [M-H-98](-) fragment ions in ion-trap CID and higher energy collision dissociation (HCD) spectra of singly deprotonated +80 Da Tyr-peptides can be used as a reliable indication of the Tyr modification group nature. For multiply deprotonated +80 Da Tyr-peptides, CID spectra of sTyr- and pTyr-containing sequences can be readily distinguished based on the presence/absence of the [M-nH-79]((n-1)-) and [M-nH-79-NL]((n-1)-) (n=2, 3) fragment ions (NL=neutral loss).  相似文献   

20.
Phosphorylation of proteins is an important post-translational protein modification in cellular response to environmental change and occurs in both prokaryotes and eukaryotes. Identification of the amino acid on individual proteins that become phosphorylated in response to extracellular stimulus is essential for understanding the mechanisms involved in the intracellular signals that these modifications facilitate. Most protein kinases catalyze the phosphorylation of proteins on serine, threonine or tyrosine. Although tyrosine phosphorylation is often the least abundant of the three major phosphorylation sites, it is important owing to its role in signal pathways. Currently available methods for the identification of phosphorylation sites can often miss low levels of tyrosine phosphorylations. This paper describes a method for the identification of phosphotyrosine-containing peptides using electrospray ionization on an ion trap mass spectrometer. Skimmer-activated collision-induced dissociation (CID) was used to generate the phosphotyrosine immonium ion at m/z 216. This method is gentle enough that the protonated molecule of the intact peptide is still observed. In-trap CID was employed for the verification of the phosphotyrosine immonium ion. Using this technique, low levels of phosphotyrosine-containing peptides can be identified from peptide mixtures separated by nanoflow micro liquid chromatography/mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号