首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data are given on an experimental study of the effect of grain size and carbon content in steels on the discontinuous character of their stress-strain diagrams. The results of the tests are interpreted in terms of dislocation concepts.  相似文献   

2.
3.
4.
A study has been made of the effect of dispersed aluminum oxide in various concentrations on the grain size of nickel in the preparation of Ni-Al2O3 alloys and also of the connection between the resistance of the materials to compression and their initial structure. It is shown that the increase in the flow stresses of these alloys as compared with pure nickel is due to the fact that the oxides increase the resistance to movement of the dislocations within the grains, reduce their size, and also change the condition of the grain boundaries.  相似文献   

5.
The “high strength-low plasticity resource” dilemma associated with the macrolocalization of plastic deformation in the form of a neck in a stretched specimen, which leads to ductile failure of the specimen, has been theoretically discussed in the framework of the dislocation-kinetic approach. It has been quantitatively demonstrated using micro- and nanocrystalline metals as an example that their low plasticity resource (a small value of uniform strain before the beginning of the neck formation) and quasi-embrittlement result from the strong increase in the yield strength with a decrease in the grain size and the strain-hardening coefficient due to the annihilation of dislocations in the boundaries and bulk of grains.  相似文献   

6.
7.
8.
9.
Dispersion measurements on the volume plasmon in fine dispersed Al-Mg-alloys of the two phase α + β structure show one or two plasmon peaks, depending on wavector k. The relative intensities of the two peaks are k-dependent.  相似文献   

10.
11.
The wetting behavior of liquid metal was studied for the Al-Sn system with particular reference to low Sn concentrations. It was shown that for Sn concentrations below 5 wt-%, liquid grain boundary films break up into separate inclusions, the wetting angle of which increases with decreasing inclusion size. Possible explanations for this phenomenon are discussed, and it is concluded that the wetting angle is not a fixed constant according solely to Young's equation, but that a correction factor is required for small inclusions.  相似文献   

12.
用无电电镀的化学方法,在VHF-PECVD沉积获得的非晶硅薄膜表面形成镍诱导源,在550℃下退火若干小时,可以诱导产生微米量级的多晶硅晶粒.用此法形成的镍源可以均匀地分布在非晶硅薄膜的表面.非晶硅薄膜上形成晶核的数量取决于镍溶液的浓度、pH值和无电电镀的时间等参量.当成核密度比较低时可以观察到径向晶化现象.用VHF-PECVD非晶硅薄膜作为晶化前驱物,晶化后多晶硅的最大晶粒尺寸可达到90μm.用此多晶硅试制的TFT,获得了良好的器件特性. 关键词: 金属诱导晶化 化学源 多晶硅 薄膜晶体管  相似文献   

13.
The magnetostriction constant of nickel was measured as a function of plastic deformation up to an elongation of 30%. The values of the magnetostriction constant in deformed samples deviate considerably, a fact which cannot be explained by errors of measurement. The absolute value of the magnetostriction constant decreases with increasing plastic deformation (by around 5%).
30% . , . ( 5%).


In conclusion the authors thank J. Kaczér, C. Sc. and B. esták, C. Sc. for carefully reading the paper and for their remarks, J. Míová for help in the measurements and workers of the chemical department of our Institute for careful preparation of the samples.  相似文献   

14.
R.L. Smith 《Ultrasonics》1982,20(5):211-214
An expression has been derived for the effect of the grain size distribution in polycrystalline materials on the frequency dependence of the ultrasonic attenuation. It has been shown that two specimens with the same mean grain size can have significantly different ultrasonic attenuations if their grain size distributions are different and that no unique solution in terms of the grain size exists for a particular ultrasonic attenuation against frequency curve. Qualitative agreement has been found between the theory and some of the experimental data available.  相似文献   

15.
Polycrystalline ferrite materials with the chemical composition of Ni0.49Zn0.49Co0.02Fe1.90Ox have been fabricated using the conventional ceramic sintering method. Grain sizes have been adjusted from ∼2.2 to ∼13.5 μm with changing sintering conditions. From the measurements of the complex permeability, it is suggested that the permeability is dominated only by the spin rotation at mono-domain state and both domain wall and spin rotation contribute at multi-domain state. At mono-domain state, the core loss has been drastically decreased similar to the other work. The measurement result for the loss angle indicates that the low loss state can be maintained up to the higher magnetic field with smaller grain size in spite of the mono-domain state. The simplified wire-wounded type inductors have been also fabricated and characterized. The results have shown that the inductor fabricated with the smaller grain size has a better performance in the quality value under relatively higher current.  相似文献   

16.
17.
The temperature dependence of minor hysteresis loops of compressively deformed nickel single crystals has been investigated in a wide temperature range below the Curie temperature of 628 K. There exist power-law relations between the field-dependent parameters of minor-loops, and their exponents are independent of both temperature and strain after the compressive deformation. These observations indicate the presence of universal power laws in minor hysteresis loops. The minor-loop coefficients of the power laws show a similar temperature dependence of the coercive force, which is quantitatively related to the dislocation density. These properties of minor hysteresis loops are useful for the accurate and quantitative nondestructive evaluation of age degradation in ferromagnetic materials.  相似文献   

18.
It has been reported previously that, for single and polycrystalline copper (fcc), the indentation size effect and the grain size effect (GSE) can be combined in a single length-scale-dependent deformation mechanism linked to a characteristic length-scale calculable by a dislocation-slip-distance approach (X. D. Hou and N. M. Jennett, ‘Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects,’ Acta Mater., Vol. 60, pp. 4128–4135, 2012). Recently, we identified a ‘lateral size effect (LSE)’ in scratch hardness measurements in single crystal copper, where the scratch hardness increases when the scratch size is reduced (A. Kareer, X. D. Hou, N. M. Jennett and S. V. Hainsworth ‘The existence of a lateral size effect and the relationship between indentation and scratch hardness’ Philos. Mag. published online 24 March 2016). This paper investigates the effect of grain size on the scratch hardness of polycrystalline copper with average grain sizes between 1.2 and 44.4 μm, when using a Berkovich indenter. Exactly the same samples are used as in the indentation investigation by Hou et al. (‘Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects,’ Acta Mater., Vol. 60, pp. 4128–4135, 2012). It is shown that, not only does the scratch hardness increase with decreasing grain size, but that the GSE and LSE combine in reciprocal length (as found previously for indentation) rather than as a superposition of individual stresses. Applying the same (as indentation) dislocation-slip-distance-based size effect model to scratch hardness yielded a good fit to the experimental data, strongly indicating that it is the slip-distance-like combined length-scale that determines scratch hardness. A comparison of the fit parameters obtained by indentation and scratch on the same samples is made and some distinct differences are identified. The most striking difference is that scratch hardness is over four times more sensitive to grain size than is indentation hardness.  相似文献   

19.
20.
The grain size distributions and related mechanisms in nanocomposite films with nanostructures comprising a nanocrystalline (nc) phase surrounded by an amorphous (a) matrix under different amorphous phase amounts (V a) have been analyzed by using a Monte Carlo grain growth model. The results show that with the V a value increasing to a critical value of ~28%, the grain size distribution approaches lognormality, and it becomes off-lognormal when the V a value is larger or smaller than ~28%. The simulated results are in a good agreement with the experiment. It is shown that the homogenous or inhomogeneous grain growth mode, determined by the energy exerted on the grain boundary, originates in lognormal or off-lognormal grain size distributions in nanocomposite films. Also, in a system with lognormal grain size distribution, the amorphous phase just covers all grain boundaries (GBs) and the length obtained by summing the boundary circumference of all nanograins is the longest. It is expected that this microstructure can result in exceptional properties of nanocomposite films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号