首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The response of a micropolar thermoelastic medium possessing cubic symmetry with one relaxation time due to time harmonic sources has been investigated. Fourier transform has been employed and the transform has been inverted by using a numerical inversion technique. The components of displacement, stress, microrotation and temperature distribution in the physical domain are obtained numerically. The results of normal displacement, normal force stress, tangential couple stress and temperature distribution have been compared for micropolar cubic crystal and isotropic micropolar solid. The numerical results are illustrated graphically for a particular material. Some special cases have also been deduced.  相似文献   

2.
The present problem is the deformation of micropolar thermoelastic solids with cubic symmetry under the influence of various sources acting on the plane surface. Analytic expressions for displacement components, microrotation, force stress, couple stress, and temperature distribution are obtained in the physical domain for Lord–Shulman (L–S) and Green–Lindsay (G–L) theories of thermoelasticity by applying integral transforms. A numerical inversion technique has been applied to obtain the solution in the physical domain. The numerical results are presented graphically for a particular model.  相似文献   

3.
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.  相似文献   

4.
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.  相似文献   

5.
由运动内热源引起的磁热黏弹性问题的研究   总被引:1,自引:1,他引:0  
在具有两个热松弛时间的广义热弹性理论下, 研究了处于定常磁场中的均布各向同性黏弹性半空间中, 由以均匀速度运动的线热源引起的瞬态波问题. 通过引入黏弹性向量势和热黏弹性标量势,问题退化为求解3个偏微分方程. 运用Laplace变换(对时间变量)和Fourier变换(对一个空间变量), 得到了变换域内应力和位移的解析表达式. 采用级数展开法, 得到了边界位移在小时间范围内的近似解, 给出了解的近似范围, 同时还研究了两种特例:(1)热源静止不动, (2)不考虑热松弛时间的影响. 最后对于丙烯酸塑料介质给出了数值结果.  相似文献   

6.
研究处于均布磁场中的理想导体的二维电磁热弹性耦合问题,引入势函数使控制方程转化为3个偏微分方程.运用Laplace变换和Fourier变换得到该问题在变换域内的精确表达式,再通过级数展开和Laplace逆变换法求得在时间较短时的逆变换,得到时间-空间域内问题的解.运用此方法研究了表面受到热冲击的半无限空间问题.给出了电磁热弹性波、膨胀波和横向波传播的速度,并通过数值计算,给出了各个场量的分布图.所得结论与已有的结论一致.  相似文献   

7.
The present paper is concerned with the investigation of disturbances in'a homogeneous, isotropic elastic medium with generalized thermoelastic diffusion, when a moving source is acting along one of the co-ordinate axis on the boundary of the medium. Eigen value approach is applied to study the disturbance in Laplace-Fourier transform domain for a two dimensional problem. The analytical expressions for displacement components, stresses, temperature field, concentration and chemical potential are obtained in the physical domain by using a numerical technique for the inversion of Laplace transform based on Fourier expansion techniques. These expressions are calculated numerically for a copper like material and depicted graphically. As special cases, the results in generalized thermoelastic and elastic media are obtained. Effect of presence of diffusion is analyzed theoretically and numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号