首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

2.
利用测量流动电位的方法考察了纳滤膜的表面电学性能对纳滤膜的截留性能的影响.首先,采用不同功能层材料制备了复合纳滤(NF)膜,考察功能层的交联时间、单体结构等对表面电性能的影响,研究纳滤膜对不同无机盐的选择截留性能与表面电性能的关系.通过流动电位法测定纳滤膜的表面电学参数,如流动电位(ΔE)、zeta电位(ζ)和表面电荷密度(σd).实验表明,这些电学参数的变化与功能层交联时间和纳滤膜截留率的变化一致,在交联时间为45 s时,3种电学参数的绝对值均最大,而纳滤膜对无机盐的截留率也最大.复合纳滤膜zeta电位的绝对值(|ζ|)按照Na2SO4>MgSO4>MgCl2变化,同截留率的变化相同.带侧基单体交联后得到的纳滤膜的表面电性能参数的绝对值小于不带侧基单体的.因此,流动电位法可用于研究复合纳滤膜的截留机理和功能层结构.  相似文献   

3.
This paper aims to study the structure–property relationship and make several reasonable suggestions for tailoring special separation performance and surface properties of thin-film composite polyamide membranes. In the experiments, composite membranes of different thin films with small structural differences were prepared through interfacial polymerization of trimesoyl chloride (TMC), 5-isocyanato-isophthaloyl chloride (ICIC), and 5-chloroformyloxy-isophthaloyl chloride (CFIC) with m-phenylenediamine (MPD) separately, after which their reverse osmosis performances were evaluated by permeation experiment with salt aqueous solution, and film properties were characterized by AFM, SEM, XPS, ATR-IR, contact angle and streaming potential measurements. Chlorine stability was also studied through the evaluation of membrane performance before and after hypochlorite exposure. The results show that the polyacyl chloride structure strongly influences the reverse osmosis performance, surface properties and chlorine stability of the composite membranes; that the introduction of isocyanato group into polyacyl chloride improves the hydrophilicity, water permeability and surface smoothness of the thin-film composite membrane, and increases the absolute value of zeta potential at both low and high pH, but reduces the chlorine stability; and that the introduction of chloroformyloxy group increases the salt rejection rate and the surface roughness of the composite membrane, but lowers the water permeability.  相似文献   

4.
Laboratory-scale colloidal fouling tests, comparing the fouling behavior of cellulose acetate and aromatic polyamide thin-film composite reverse osmosis (RO) membranes, are reported. Fouling of both membranes was studied at identical initial permeation rates so that the effect of the transverse hydrodynamic force (permeation drag) on the fouling of both membranes is comparable. Results showed a significantly higher fouling rate for the thin-film composite membranes compared to that for the cellulose acetate membranes. Addition of an anionic surfactant (sodium dodecyl sulfate, SDS) to mask variations in chemical and electrokinetic surface characteristics of the cellulose acetate and aromatic polyamide membranes resulted in only a small change in the fouling behavior. The higher fouling rate for the thin-film composite membranes is attributed to surface roughness which is inherent in interfacially polymerized aromatic polyamide composite membranes. AFM and SEM images of the two membrane surfaces strongly support this conclusion. These surface images reveal that the thin-film composite membrane exhibits large-scale surface roughness of ridge-and-valley structure, while the cellulose acetate membrane surface is relatively smooth.  相似文献   

5.
A styrene-maleic anhydride (SMA) alternating copolymer with ultrahigh molecular weight (Mw > 106) synthesized in super critical carbon dioxide (SC CO2) medium was used as hydrophilic polymeric additive in the preparation of polyethersulfone (PES) membranes. The PES/SMA blend membranes were prepared by immersion precipitation process. X-ray photoelectronic spectroscopy (XPS) measurements confirmed that the hydrolyzed SMA preferentially segregated to membrane–coagulant interface during membrane formation. For the PES/SMA blend membranes, no big change was observed in the cross-sectional structure and the mechanical properties were well maintained after SMA addition except that a thicker top layer was formed. The surface morphology analysis by atomic force microscopy (AFM) showed that the membrane surface roughness increased with the added SMA amount. The results of water contact angle, water absorbance measurements and static protein adsorption experiments revealed that the surface enrichment of SMA endowed PES/SMA blend membranes with significantly improved surface hydrophilicity and protein-adsorption resistance.  相似文献   

6.
Tangential streaming potential (TSP) measurements have been carried out so as to assess the electrokinetic properties of the active layer of organic nanofiltration (NF) membranes. Due to the porous structure of NF membranes, cares must be taken to convert the experimental data into zeta potential. Indeed, an assumption that is implicitly made in Smoluchowski's theory (or in related approaches accounting for the surface conduction phenomenon) is that both streaming and conduction currents involved in the streaming potential process flow through an identical path. Such an assumption does not hold with porous membranes since the conduction current is expected to flow wherever the electric conductivity differs from zero. Consequently, a non-negligible share of the conduction current is likely to flow through the membrane body filled with the electrolyte solution. This phenomenon has been taken into account by carrying out a series of TSP measurements at various channel heights. Experiments have been conducted with various electrolyte solutions. The inferred zeta potentials have been further converted into membrane volume charge densities which have been used to predict the membrane performances in terms of rejection rates. The conventional NF theory, i.e. based on a steric/Donnan exclusion mechanism, has been found to be unable to describe the experimental rejection rates. Using the volume charge density of the membrane as an adjustable parameter, it has been shown that the conventional theory even predicts the opposite sign for the membrane charge. On the other hand, the experimental rejection rates have been well described by including dielectric effects in the exclusion mechanism. In this case, a noticeable lowering of the effective dielectric constant of the electrolyte solution inside pores has been predicted (with respect to the bulk value).  相似文献   

7.
The surfaces of six polymeric membranes—two polysulphone membranes, two composite reverse‐osmosis polyamide/polysulphone membranes having polyamide as the active layer and two activated membranes containing di‐2‐ethylhexylphosphoric acid and di‐2‐ethylhexyldithiophosphoric acid as carriers, respectively—have been characterized before and after irradiation with an x‐ray source, both chemically and topographically by XPS and atomic force microscopy (AFM), respectively. Changes in atomic concentrations of the characteristic elements of the membranes and in the shape of XPS spectra as a function of irradiation time can be related to chemical modifications on the membrane surface. The most significant changes have been observed for polysulphone, which is reduced by x‐ray action; this fact also shows the inhomogeneity of the surface of the di‐2‐ethylhexyldithiophosphoric‐activated membrane. In contrast, polyamide top layers of composite membranes have been shown to be the most stable. Chemical modifications are not related directly to changes in membrane roughness because for all membranes only small changes have been observed for AFM images recorded before and after membrane irradiation. Moreover, the roughness of both polysulphone membranes decreases slightly due to x‐ray radiation but increases slightly for all polyamide‐containing membranes (composite and activated membranes). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The relationship between the surface structures of skin layers of crosslinked aromatic polyamide composite reverse osmosis (RO) membranes and their RO performances have been studied using two surface analytical techniques: SEM and AFM. As a result, it was found that RO membranes whose skin layer surface structures were rough produced high fluxes, and an approximately linear relationship existed between this surface roughness and RO membrane flux. Accordingly, skin layer surface unevenness of crosslinked aromatic polyamide composite RO membranes is regarded as an enlargement of the effective RO membrane area.  相似文献   

9.
Asymmetric ultrafiltration membranes were fabricated from the blends of phenolphthalein polyethersulfone (PES-C) and acrylonitrile copolymers containing charged groups, poly(acrylonitrile-co-acrylamido methylpropane sulfonic acid) (PAN-co-AMPS). From the surface analysis by XPS and ATR-FTIR, it was found that the charged groups tend to accumulate onto the membrane surface. This result indicated that membrane surface modification for imparting surface electrical properties could be carried out by blending charged polymer. Furthermore, with the help of a relatively novel method to measure membrane conduction, the true zeta potentials calculated on the basis of the streaming potential measurements were used to reflect the charge state of membrane surface. In addition, it was noteworthy that, from the profiles of zeta potential versus pH curves and the magnitude of zeta potentials, the determination of zeta potential was dependent not only on the electrical properties of membrane surface but also on its hydrophilicity. At last, based on a relatively elaborate study on the electrostatic interaction between the membrane surface and protein, it was found that these charged membranes could meet different demands of membrane applications, such as resisting protein fouling or protein separation, through adjusting solution pH value.  相似文献   

10.
Thin film composite (TFC) membranes based polyamide were prepared with m-phenylenediamine (MPD), m-phenylenediamine-5-sulfonic acid (SMPD) and trimesoyl chloride (TMC) through interfacial polymerization technique on the polysulphone supporting film. The membranes were characterized using permeation experiments with salt water, attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) as well as scanning electronic microscopy (SEM). This study has shown that the active layer of TFC membrane is aromatic polyamide, including sulfuric acid function group (-SO3H) according to the result of ATR-IR and XPS. The NaCl rejection of RO membranes decreased and the flux increased when WSMPD/WMPD increased from 0 to 1, and the linear part with pendant -COOH in membrane barrier layer increased with the increase of SMPD content, but the surface of membrane becoming smoother and smoother with the increase of SMPD content. So the membranes performance mainly was determined by chemical structure in their barrier layer.  相似文献   

11.
Surface modification of biomaterials is a way to tailor cell responses whilst retaining the bulk properties. In this work, chitosan membranes were prepared by solvent casting and treated with nitrogen or argon plasma at 20 W for 10-40 min. AFM indicated an increase in the surface roughness as a result of the ongoing etching process. XPS and contact angle measurements showed different surface elemental compositions and higher surface free energy. The MTS test and direct contact assays with an L929 fibroblast cell line indicated that the plasma treatment improved the cell adhesion and proliferation. Overall, the results demonstrated that such plasma treatments could significantly improve the biocompatibility of chitosan membranes and thus improve their potential in wound dressings and tissue engineering applications.  相似文献   

12.
The impacts of membrane degradation due to chlorine attack on the rejection of pharmaceutically active compounds (PhACs) by nanofiltration and reverse osmosis membranes were investigated in this study. Membrane degradation was simulated by soaking the membranes in a sodium hypochlorite solution of various concentrations over 18 h. Changes in membrane surface properties were characterised by contact angle measurement, atomic force microscopy analysis, and streaming potential measurement. The impacts of hypochlorite exposure to the membrane separation processes were ascertained by comparing the rejection of PhACs by virgin and chlorine-exposed membranes. Overall, the reverse osmosis BW30 membrane and the tight nanofiltration NF90 membrane were much more resilient to chlorine exposure than the larger pore size TFC-SR2 and NF270 nanofiltration membranes. In fact, rejection of all three PhACs selected in this study by the BW30 remained largely unchanged after hypochlorite exposure and further characterisation did not reveal any evidence of compromised separation capability. In contrast, the effects of chlorine exposure to the two loose nanofiltration membranes were quite profound. While chlorine exposure generally resulted in reduced rejection of PhACs, a small increase in rejection was observed when a more dilute hypochlorite solution was used. Changes in the membrane surface morphology as well as observed rejection of inorganic salts and PhACs were found to be consistent with mechanisms of chlorine oxidation of polyamide membranes reported in the literature. Chlorine oxidation consistently resulted in a more negative zeta potential of all four membranes investigated in this study. Conformational alterations of the membrane polyamide active skin layer were also evident as reflected by changes in surface roughness before and after chlorine exposure. Such alterations can either loosen or tighten the effective membrane pore size, leading to either a decrease or an increase in rejection. Both of these phenomena were observed in this study, although the decrease in the rejection of PhACs was overwhelming from exposure to highly concentrated hypochlorite solution.  相似文献   

13.
Membrane degradations by biofouling and free chlorine oxidation are the major obstacles for aromatic polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes to realize high performance over a long period of operation. In this work, a hydantoin derivative, 3-monomethylol-5,5-dimethylhydantoin (MDMH), was grafted onto the nascent aromatic polyamide membrane surfaces by the reactions with active groups (e.g., acyl chloride groups) in the surfaces. The grafted MDMH moieties with high reaction activity and free chlorine could play as sacrificial pendant groups when membranes suffer from chlorine attacks, and the chlorination products N-halamines with strong antimicrobial function could sterilize microorganisms on membrane surfaces and then regenerate to MDMH. This was designed as a novel means to improve both chlorine resistances and anti-biofouling properties of the aromatic polyamide TFC RO membranes.Attenuated total reflectance mode Fourier transform infrared spectroscopy (ATR-FTIR) revealed that the MDMH-modified membranes had two characteristic bands at 1772 and 1709 cm−1 corresponding to two carbonyl groups in hydantoin ring. This suggested the successful grafting of MDMH onto the membrane surfaces, which was further confirmed and quantified by X-ray photoelectron spectroscopy (XPS) analysis. After modification with MDMH, the membrane surface hydrophilicity increased obviously as contact angles decreased from 57.7° to 50.4–31.5°. But, there was no obvious change in membrane surface roughness after modification. The MDMH-modified membranes were shown to possess high chlorine resistances with small changes in water fluxes and salt rejections after chlorination with 100–2000 ppm h chlorine at pH 4. The chlorinated MDMH-modified membranes demonstrated obvious sterilization effects on Escherchia coli and substantial preventions against microbial fouling. Therefore, the MDMH-modified membranes offer a potential use as a new type of chlorine resistance and anti-biofouling TFC RO membranes.  相似文献   

14.
朱利平 《高分子科学》2012,30(2):152-163
Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions,a novel hydrophilic nanofiltration(NF) membrane was fabricated by simply dipping polysulfone(PSf) ultrafiltration(UF) substrate in dopamine solution.The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy(FTIR-ATR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) and atomic force microscopy(AFM).The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane.The surface hydrophilicity of membranes was evaluated through water contact angle measurements.It was found that membrane hydrophilicity was significantly improved after coating a polydopamine(pDA) layer,especially after double coating.The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue,congo red and methyl orange with a pure water flux of 83.7 L/(m2·h) under 0.6 MPa.The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process.The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment.It was demonstrated that the salts rejections followed the sequence:NaCl2SO4422,and the rejection to CaCl2 reached 68.7%.Moreover,the composite NF membranes showed a good stability in water-phase filtration process.  相似文献   

15.
Determination of the surface roughness by AFM is crucial to the study of particle fouling in nanofiltration. It is, however, very difficult to compare the different roughness values reported in the literature because of a lack in uniformity in the methods applied to determine surface roughness. AFM is used in both noncontact mode and tapping mode; moreover, the size of the scan area is highly variable. This study compares, for six different nanofiltration membranes (UTC-20, N30F, Desal 51HL, Desal 5DL, NTR7450, NF-PES-10), noncontact mode AFM with tapping mode AFM for several sizes of the scan area. Although the absolute roughness values are different for noncontact AFM and tapping mode AFM, no difference is found between the two modes of AFM in ranking the nanofiltration membranes with respect to their surface roughness. NTR 7450 and NF-PES-10 are the smoothest membranes, while the roughest surface can be found with Desal 51HL and Desal 5DL. UTC-20 and N30F are characterized by an intermediate roughness value. An increase in roughness with increasing scan area is observed for both AFM modes. Larger differences between the roughnesses of the membranes are obtained with tapping mode AFM because of the tapping of the tip on the surface. Phase imaging is an extension of tapping mode AFM, measuring the phase shift between the cantilever oscillation and the oscillation of the piezo driver. This phase shift reflects the interaction between the cantilever and the membrane surface. A comparison with contact angle measurements proves that a small phase shift corresponds to a large contact angle, representing a hydrophobic membrane surface.  相似文献   

16.
Chemical force microscopy (CFM) was used to characterize the chemical heterogeneity of two commercially available nanofiltration and reverse osmosis membranes. CFM probes were modified with three different terminal functionalities: methyl (CH3), carboxyl (COOH), and hydroxyl (OH). Chemically distinct information about the membrane surfaces was deduced based on differences in adhesion between the CFM probes and the membrane surfaces using both traditional atomic force microscopy (AFM) force measurements and spatially resolved friction images. Contact angle titration and streaming potential measurements provided general information about surface chemistry and potential, which largely complemented the CFM analyses, but could not match the accuracy of CFM on the atomic level. Using CFM it was found that both membranes were characterized as chemically heterogeneous. Specifically, membrane chemical heterogeneity became more significant as the scan size approached colloidal or micron-sized dimensions. In many instances, the chemically unique regions, contributing to the overall chemical heterogeneity of the membrane surface, were substantially different in chemistry (e.g., hydrophobicity) from that determined for the surface at large from contact angel and streaming potential analyses. Topographical and corresponding CFM images supports previous adhesion studies finding a correlation between surface roughness and the magnitude of adhesion measured with AFM. However, chemical specificity was also significant and in turn measurable with CFM. The implication of these findings for future membrane development is discussed.  相似文献   

17.
Effect of silane coupling agents on the performance of RO membranes   总被引:1,自引:0,他引:1  
This study investigates the effect of silane coupling agents on the performance of reverse osmosis (RO) membranes on the basis of sol–gel coating method. The surfaces of the RO membranes were chemically modified with four different alkoxysilanes in order to reduce their hydrophilicity. The objective of this study is to superpose hydrophobic polysiloxane layer on the surface of a polyamide TFC RO membrane and to increase the extent of salt rejection by the modified membranes. A commercial composite RO membrane (SWC1) was treated with silane coupling agents in ethanol at three different concentrations: 1.0, 1.5, and 2.0% (w/v). The silane coupling agents contain one alkyl or phenyl and three alkoxy groups (e.g., methyltriethoxysilane, octyltriethoxysilane, octadecyltrimethoxysilane and phenyltriethoxysilane). In addition, the effect of alkyl or phenyl group hydrophobicity on the permeability and salt rejection of the modified membrane was examined. The surfaces of the modified membranes were characterized by SEM, AFM, contact angle analyzer, and XPS in order to confirm successful sol–gel methods. The modified membranes showed significantly enhanced salt rejection without a decrease in flux. From the surface analysis results, we can observe the changes in the surface roughness, elemental composition, electron energy, and hydrophilicity.  相似文献   

18.
The aim of this paper is to survey interlaboratory studies of performance data to produce highly permeable thin‐film composite (TFC) polyamide nanofiltration (NF) membrane in the form of flat sheet at bench scale. TFC polyamide NF membranes were fabricated via interfacial polymerization of 1,3‐phenylenediamine and trimesoyl chloride on porous polyethersulfone (PES) membrane. The NF membranes were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross‐flow filtration. The AFM and SEM analyses indicated that a rough and dense film was formed on the PES support membrane. The permeability and NaCl rejection of the NF membrane prepared at the presence of camphor sulfonic acid as pH regulator and triethylamine as accelerator in the aqueous solution were 21 l m?2 h?1 and 70%, respectively. In order to estimate the repeatability and reproducibility standard deviations, the development of an interlaboratory study was conducted by measurements of permeation flux and salt rejection of the synthesized membranes. Repeatability standard deviation of the permeation flux data for the membrane based on optimum formulation was 1.99, and reproducibility standard deviation was 3.55. Also based on this trend, repeatability standard deviation of the salt rejection data was 1.57, and reproducibility standard deviation was 4.11. The American Society for Testing and Materials standard E691‐05 was used for data validation of the repeatability and reproducibility standard deviations and consistency statistics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Low-temperature CO2 plasma is used for the treatment of poly-ethersulfone (PES), polyamide (PA) and poly-phenylene ethersulfone (PPE) ultrafiltration membranes. This has led to significant enhancement of the wetting characteristics of the membrane surface as is shown by contact angle measurements and Fourier transform infrared (FTIR) spectrum analysis of the treated membranes. Changes in the physical characteristics of the surface, such as tensile property, surface roughness, etc. are quantified by tensile strength measurement and atomic force microscopy (AFM), respectively. An increase in the measured values of the di-electric constants further highlights the hydrophilic modification of the surface. A series of ultrafiltration experiments using a BSA solution of known concentration under different operating conditions is performed and the deposition thicknesses over the membrane surface during ultrafiltration are measured directly using image analyzing microscopy. The results clearly demonstrate that a plasma treated PES membrane is more hydrophilic with smoother surface and resists fouling leading to significant enhancement of permeate flux.  相似文献   

20.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号