首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In studying resonant Raman scattering in the vicinity of the A and B excitons of CdSe, we have observed three new Raman peaks. Two of the peaks have been identified as two-phonon modes consisting of a longitudinal optical (LO) phonon plus respectively a transverse acoustic (TA) and a longitudinal acoustic (LA) phonon. A theory which involves the scattering of photoexcited B excitons to the A exciton by acoustic phonons via the piezoelectric exciton-phonon interaction was found to explain quantitatively the peak positions, lineshape and resonance enhancements of the observed peaks.  相似文献   

2.
The cyclotron resonance width for a semiconductor under extreme high fields is calculated with the assumptions that electrons are scattered by acoustic phonons inelastically. The numerical results are in very good agreement with the recent experiments on Ge by Miura et al. (T ~ 300 K, B ~ 97 tesla). The energy-dependent widths arising from the relaxation processes with absorption and emission of a phonon show quite distinctive behaviors at low electron energies. At extreme low temperatures when few phonons are present, the width arising from the zero-point motion of the lattice is finite but very small. The charged-impurity scattering with the density as low as 1012 cm?3 numerically dominate the width due to the electron-phonon interaction below 10 K. The present theory supplements the previous work by Suzuki et al. where the elastic-scattering and high-temperature approximation were used.  相似文献   

3.
Summary  Four scattering mechanisms are compared in the quantum limit cyclotron resonance inn-InSb on the basis of a many body theory introduced recently. In the quite low temperature region (T<70 K ) for the wavelength of the electromagnetic wave of 84 μ m, the electrons are scattered mostly by the ionized impurities, although the deformation potential phonon and the piezoelectric scattering are non-negligible. In the high temperature region (T>70 K ) the polar optical phonon scattering is found to be most dominant. It is also shown that the impurities give place to the phonons for the scattering mechanism above 70 K. On the other hand, at 20 K the ionized impurity scattering is dominant in the magnetic field region 0.2 T<B<2 T. This work has been supported by the Basis Science Research Institute Program, Korea Ministry of Education (Project No. BSRI-96-2405).  相似文献   

4.
We report the results of our experimental and theoretical studies concerning the temperature dependence of electron mobility in a two dimensional electron gas (2DEG) confined at the GaN/AlGaN interface. Experimental mobility of about at 3.8 K remains almost constant up to lattice temperature , it then decreases rapidly down to about at . The results are discussed using a theoretical model that takes into account the most important scattering mechanisms contributing to determine the mobility of electrons in 2DEG. We show that the polar optical phonon scattering is the dominant mechanism at high temperatures and the acoustic deformation potential and piezoelectric scatterings are dominant at the intermediate temperatures. At low temperatures, the Hall mobility is confined by both the interface roughness (IFR) and ionised impurity scattering. The correlation length (Λ) and lateral size (Δ) of roughness at the GaN/AlGaN heterointerface have been determined by fitting best to our low-temperature experimental data.  相似文献   

5.
The transient magnetooptical response of electrons with partly inverted initial distribution produced by an ultrashort optical pulse near the optical phonon energy is studied theoretically. Transient cyclotron absorption and Faraday rotation of polarization plane are considered for bulk semiconductors (GaAs, InAs, and InSb) as well as for a GaAs-based quantum well. Damping of the response due to electron momentum relaxation associated with elastic scattering from acoustic phonons is taken into account in calculations, as well as the evolution of the electron distribution due to quasi-elastic energy relaxation at acoustic phonons and effective inelastic transitions accompanied by spontaneous emission of optical phonons. Nonstationary negative absorption in the cyclotron resonance conditions and peculiarities of Faraday rotation of the polarization plane associated with partial inversion of the initial distribution are considered. The possibility of transient enhancement of the probe field under cyclotron resonance conditions is indicated.  相似文献   

6.
The average energy loss rate and relaxation time of non-degenerate 2D-excitons interacting with the deformation- and piezoelectric potential of 3D acoustic bulk phonons are calculated perturbation theoretically as a function of the exciton temperature using the matrix elements previously derived in [1]. The energy loss rate limited by the acoustic deformation potential increases proportional toT 3 7/2 (T 3 3/2 ) if the phonon energy is much larger (smaller) than the thermal energy of the excitons having the temperatureT e . It is shown, that the phonon wavevector componentq z perpendicular to the interface of the QW must be taken into account in the calculation of the total excitonic loss rate in order to obtain the energy relaxation time value of 30 ps recently estimated in [2] from photoluminescence intensity measurements.  相似文献   

7.
Energy loss rates of two-dimensional electron gas in GaInAs/AlInAs, InSb/AlInSb and GaSb/AlGaAsSb heterostructures are theoretically investigated over a wide range of temperature based on the electron–one-phonon and electron–two-phonon interactions. Calculations are presented for electron acoustic one-phonon interaction via deformation potential and piezoelectric coupling and electron–LO phonon interaction with hot phonon effect. In addition, energy loss rate due to electron-two-zone edge transverse acoustic (TA) phonons is also presented. A very good agreement is obtained between the calculations and experimental data in GaInAs/AlInAs structure with the inclusion of electron–two-zone edge TA phonon interaction. In all these three structures energy loss is dominated by (i) acoustic one-phonon scattering at low temperatures, (ii) two-TA zone edge phonons at intermediate temperatures and (iii) LO phonons at high temperatures. It is observed that, hot phonon effect reduces the energy loss rate considerably in these structures.  相似文献   

8.
The rates of scattering of the conduction electrons in degenerate two-dimensional electron gas in the surface of compound semiconductors at low lattice temperatures have been obtained for interaction with the piezoelectric and deformation potential acoustic phonons, under different prevailing conditions. The calculations have been carried out taking due account of the screening of the interaction potential at low temperatures where again the phonon energy cannot be neglected in comparison to the average thermal energy of the electrons and, as a result, the equipartition approximation for the phonon distribution can hardly be valid. The scattering rates thus obtained for inversion layers in GaAs and ZnO are found to depend upon the carrier energy, the lattice temperature and the level of degeneracy in quite involved manners, which are very different from what follows if one makes the simplifying approximation of negligible phonon energy or disregards the effects of screening. The mobility characteristics are then obtained using these scattering rates. The results show how the screening of the interaction potential and the finite energy of the intravalley acoustic and piezoelectric phonons significantly change the mobility characteristics of the degenerate surface layers at low lattice temperatures. The inadequacies of the present theory are pointed out and recommendations for possible refinements are discussed.  相似文献   

9.
《Physics letters. A》1988,133(9):506-508
Following the method given by Srinivas et al., the scattering of electrons on acoustic phonons and its effect on the cyclotron resonance width in CdS and CdTe is calculated. Two mechanisms: scattering by means of a deformation potential and through piezo-electric coupling are considered; the importance of the latter is stressed.  相似文献   

10.
A quantum theory of free carrier absorption in nondegenerate semiconductors and in strong magnetic fields which was previously developed to treat the case when acoustic phonon scattering dominates the free carrier absorption process [1] is extended to treat the case when nonpolar optical scattering is important. When the electromagnetic radiation field is polarized parallel to the direction of the applied magnetic field, results are obtained which are similar to those when acoustic phonon scattering is dominant. The free carrier absorption is an oscillatory function of the magnetic field which on the average increases in magnitude with the magnetic field. However, more structure in the free carrier absorption occurs when nonpolar optical phonon scattering dominates. This is due to the fact that there are two periods in the oscillatory magnetic field dependence associated with the emission or the absorption of optical phonons during the intraband transitions. When the cyclotron frequency exceeds the sum of the photon and optical phonon frequencies, i.e. ωc > θ + ωo, the free carrier absorption is predicted to increase linearly with magnetic field when ?ωc? kBT. The magnetic field dependence of the free carrier absorption can be explained in terms of phonon-assisted transitions between the various Landau levels in a band involving the emission and absorption of optical phonons.  相似文献   

11.
The energy loss rate of an electron in degenerate surface layers of a compound semiconductor for inelastic interaction with deformation and piezoelectric acoustic phonons is calculated with due account of the screening of the perturbing potential under the condition of low lattice temperature when the approximations of the well known traditional theory is not valid. The numerical results obtained for GaAs and CdS exhibits interesting features, significantly different from what follows if one either makes the traditional approximation of negligible phonon energy or disregards the screening of the scattering potential.  相似文献   

12.
Far-infrared laser cyclotron resonance with the help of photoexcitation enables us to separate the electron-neutral donor and electron-neutral acceptor scattering rates in GaAs. Allowing for the complication due to the coexistence of donors and acceptors, inaccuracy due to unknown contribution of phonon scatterings etc., one finds that the electron-neutral donor scattering cross-section is 2.9×10–11 cm2 at 4.2 K, that is 23 times as large as the electron-acceptor scattering cross-section.  相似文献   

13.
Relaxation processes and mobility of electrons in a semiconductor quantum well are studied. The modified Pöschl-Teller potential is used as a confining potential. Scattering rates due to impurity ions, acoustic and piezoacoustic phonons are calculated taking into account the screening of scattering potentials by charge carriers. It is shown that when degenerate electrons are scattered by acoustic phonons, the dependence of scattering rate on electron wave number νac(k) is almost linear. At small k, the acoustic phonon piezoelectric scattering rate of degenerate electrons increases with k, and then it decreases slightly when k > 8 × 107 m−1. The ionized impurity scattering rate of degenerate electrons does not depend on temperature, is directly proportional to the electron density, and decreases with increasing k. Dependences of electron mobility on surface ion density and temperature are studied. It is shown that in the case of non-degenerate or slightly degenerate electron gas, a maximum appears in the temperature dependence of the mobility, and the screening effect is negligible. The screening significantly increases the mobility of electrons in the case of high degeneration. Obtained results are applied to GaAs-based quantum wells.  相似文献   

14.
Electronic thermal conductivity κe is investigated, using Boltzmann transport equation approach, in a suspended and supported bilayer graphene (BLG) as a function of temperature and electron concentration. The electron scattering due to screened charged impurity, short-range disorder and acoustic phonon via deformation potential are considered for both suspended and supported BLG. Additionally, scattering due to surface polar phonons, is considered in supported BLG. In suspended BLG, calculated κe is compared with the experimental data leaving the phonon thermal conductivity. It is emphasized that κe is important in samples with very high electron concentration and reduced phonon thermal conductivity. κe is found to be about two times smaller in supported BLG compared to that in suspended BLG. With the reduced extrinsic disorders, in principle, the intrinsic scattering by acoustic phonons can set a fundamental limit on possible intrinsic κe.  相似文献   

15.
The concentration dependence of the intermediate frequency bandwidth of heterodyne AlGaAs/GaAs detectors with 2D electron gas is measured using submillimeter spectroscopy with high time resolution at T= 4.2 K. The intermediate frequency bandwidth f3dBfalls from 245 to 145 MHz with increasing concentration of 2D electrons n s = (1.6-6.6) × 10[su11] cm-2. The dependence f3dBn s - 0.04±is observed in the studied concentration range; this dependence is determined by electron scattering by the deformation potential of acoustic phonons and piezoelectric scattering.  相似文献   

16.
Scattering experiments with a 20Ne nozzle beam from a LiF(001) surface in the 〈100〉 azimuth are reported. The (11) and (1&#x0304;1&#x0304;) Bragg reflections show broad tails due to inelastic scattering. These tails can be attributed by time-of-flight measurements to single phonon scattering on acoustic modes. The inelastic contribution decreases rapidly with increasing energy of the phonons involved.  相似文献   

17.
Thermal conductivity and ballistic phonon imaging measurements in KH2PO4 (KDP) at low temperature (T<3K) indicate that scattering from domain walls has a large effect on phonon transport. kDP has a ferroelectric phase transition from tetragonal to orthorhombic structure atT c =122 K. BelowT c domains of opposite electric polarization and crystal orientation form unless the sample is colled in an electric field. Thermal conductivity measured along the [100] (tetragonal) axis drops 30% when domain walls are present, which is independent of sample size and temperature. We attribute this decrease to phonon polarization-dependent scattering at the domain boundaries. This is verified by measurements of ballistic transport, using phonon imaging techniques, which reveal the phonon polarization and mode dependence of the scattering. The scattering is successfully modelled using continuum acoustics with simple acoustic mismatch at the domainwall. The interface scattering is found to be mode dependent: Caustic structures in the phonon images due to slow transverse phonons are most affected by the domain wall scattering, which channels these phonons along parallel planes by multiple reflections without mode conversion. Mode conversion scattering, though possible for a number of phonons, has little effect on the overall phonon transmission.  相似文献   

18.
The drift velocity, electron temperature, electron energy and momentum loss rates of a two-dimensional electron gas are calculated in a GaN/AlGaN heterojunction (HJ) at high electric fields employing the energy and momentum balance technique, assuming the drifted Fermi–Dirac (F–D) distribution function for electrons. Besides the conventional scattering mechanisms, roughness induced new scattering mechanisms such as misfit piezoelectric and misfit deformation potential scatterings are considered in momentum relaxation. Energy loss rates due to acoustic phonons and polar optical phonon scattering with hot phonon effect are considered. The calculated drift velocity, electron temperature and energy loss rate are compared with the experimental data and a good agreement is obtained. The hot phonon effect is found to reduce the drift velocity, energy and momentum loss rates, whereas it enhances the electron temperature. Also the effect of using drifted F–D distribution, due to high carrier density in GaN/AlGaN HJs, contrary to the drifted Maxwellian distribution function used in the earlier calculations, is brought out.  相似文献   

19.
Phonon-assisted cyclotron resonance (PACR) in GaAs quantum well (QW) structure is investigated via multi-photon absorption process when electrons interact with the confined acoustic phonon through deformation potential. The additional peaks in the absorption spectrum due to transitions between Landau levels accompanied with the emission and absorption of phonons are indicated. The dependence of absorption power on the temperature, magnetic field and well width is presented. Using profile method, we obtain PACR-linewidth as profiles of the curves. The temperature, magnetic field and well width dependences of the PACR-linewidth are investigated. The results are compared with those in the case of mono-photon absorption process, as well as in the electron-bulk acoustic phonon interaction. The results show that the multi-photon absorption process is strong enough to be detected in PACR.  相似文献   

20.
Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are calculated with a numerical iterative technique in the framework of Fermi-Dirac statistics. Lattice scatterings due to polar-mode longitudinal optic (LO) phonons, and acoustic phonons via deformation potential and piezoelectric couplings, are considered together with background and remote ionized impurity interactions. The parallel mode of piezoelectric scattering is found to contribute more than the perpendicular mode. We observe that the Hall mobility decreases with increasing temperature but increases with increasing channel width. The magnetoresistance coefficient is found to decrease with increasing temperature and increase with increasing magnetic field in the classical region.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号