首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some works on the lattice Monte Carlo simulation of amphiphilic systems additional peaks in the cluster size distribution has been interpreted as a clue for the phase or shape transition of micellar aggregates. On the other hand, some other works showed that the additional peaks are a result of finite size of the lattice box. In this paper using calculating energy-auto-correlation function and statistical error in correlated data, it is shown that how these apparently contradictory results are the same. To do this, we have simulated a pure system containing amphiphile and water molecules. A simple model of potential containing the main feature for these systems (the hydrophobicity of surfactant molecules) that cause the aggregates to be formed is considered to avoid any synthetic results due to additional non-real parameters. To relax the initial configuration faster, configurational bias Monte Carlo move is used in addition to reptation move. Periodic boundary condition and self-avoiding walks are used as former published works in this field. It is shown that the additional peaks is a result of the statistical errors for averaged cluster size distribution and can not be interpreted as a clue for shape or phase transition.  相似文献   

2.
Calcium gradients are prepared by sequentially filling a micropipette with casein solutions of varying calcium concentration and spreading them on glass slides. The casein film is formed by a solution casting process, which results in a macroscopically rough surface. Microbeam grazing incidence small-angle X-ray scattering (microGISAXS) is used to investigate the lateral size distribution of three main components in casein films: casein micelles, casein mini-micelles, and micellar calcium phosphate. At length scales within the beam size the film surface is flat and detection of size distribution in a macroscopic casein gradient becomes accessible. The model used to analyze the data is based on a set of three log-normal distributed particle sizes. Increasing calcium concentration causes a decrease in casein micelle diameter while the size of casein mini-micelles increases and micellar calcium phosphate particles remain unchanged.  相似文献   

3.
A numerical simulation of the relaxation process of surfactant micellar solution to a new equilibrium state is performed using model analytical representations for the main characteristics of micellar aggregates. Relaxation stages of molecular aggregate size distribution in the typical regions of aggregation number variations predicted by the analytical theory in two-flux approximation are revealed. Good agreement between the predicted values of the relaxation times of micellar solution and those obtained in numerical simulation is disclosed within the domain of applicability of two-flux approximation. Numerical algorithm proposed in this work makes it possible to study the relaxation process of micellar solution even in the case when two-flux approximation becomes inapplicable. The realization of numerical algorithm can be considered as a kind of experiment for studying the relaxation process of a model micellar solution.  相似文献   

4.
We studied the self-assembling of linear chain molecules in insoluble monolayers due to attractive interactions. We used lattice Monte Carlo simulations in a two-dimensional system. The molecules consist of segments occupying adjacent lattice sites. The head segments are confined to move along a line whereas the chain segments can arrange in a plane above the heads. Only one interaction parameter is applied. At high densities and small interaction energy the system shows percolation behavior. At moderate and small densities it can be characterized by a monotonous cluster size distribution. Self-assembling occurs at small densities for strong attractive interactions. The corresponding cluster size distributions indicate preferred cluster sizes which depend upon density and interaction strength. With increasing density the clusters grow. The internal cluster structure depends on the cluster size and the interaction parameter. The clusters tend to minimize their total energy. Molecules at cluster margins contribute less to the cluster energy and are mainly disordered. They cause that the cluster properties strongly depend on the cluster size. Large clusters only have minimum energy if the molecules in the cluster are in stretched-out conformation. With decreasing interaction strength the clusters get disordered thereby producing less energy-minimized domain boundaries.  相似文献   

5.
Sorbitan trioleate (Span 85) modified with Cibacron Blue F-3GA (CB) was used as an affinity surfactant (CB-Span 85) to form affinity-based reversed micelles in n-hexane. It was found that the addition of hexanol to the reversed micellar system resulted in a significant increase in water content and hydrodynamic radius of the affinity-based reversed micelles. Moreover, the reversed micelles with hexanol revealed broader aggregation number distribution and larger average aggregation number than the reversed micelles without hexanol addition. This is considered to be due to the decreases in the micellar curvature and rigidity of the micellar interfacial layer and the increase in the micellar interfacial fluidity. Consequently, the solubilization capacity of lysozyme increased about 70% in the reversed micellar solution with 3 vol% hexanol. On the other hand, the capacity of BSA was only 30% increased under the same conditions due to its larger molecular size than lysozyme. Kinetic analysis revealed that the increase in the micellar interfacial fluidity in the presence of hexanol resulted in faster release of lysozyme from the micelles, thus leading to an increase of the overall volumetric mass transfer coefficient in the back extraction.  相似文献   

6.
The coupled cluster method is applied to a strongly correlated lattice Hamiltonian, and the coupled cluster linear response method is extended to the calculation of electronic spectra by finding an approximation to a resolvent operator which describes the spectral response of the coupled cluster solution to excitation operators. In this spectral coupled cluster method, the ground and excited states appear as resonances in the spectra, and the resolvent can be iteratively improved in selected spectral regions. The method is applied to a MnO2 plane model which corresponds to previous experimental works.  相似文献   

7.
In this paper, we discuss the scattering behavior of two-dimensional hexagonal liquid crystals with micellar cylinders as a building unit. We treat the hexagonal phase as an accumulation of ordered domains of finite size that typically consists of one hundred parallel cylinders whose axes are perpendicular to the lattice plane. When we suppose that no specific orientation is preferred, the lengths of the cylinders are rather large compared to their diameter, and the polydispersity of the size of the cylinders is negligible; it is therefore possible to split the scattering intensity into a product of the so-called form factor and the structure factor. This product approximation is the basic condition for the use of the generalized indirect Fourier transformation (GIFT) method and the deconvolution (DECON) method to evaluate the small-angle scattering data of hexagonal phases. The GIFT method provides the parameters of the structure factor model and the pair distance distribution function of the cylinders. Via the DECON technique, we can calculate the radial contrast profile of the cylinders from the pair distance distribution function that is obtained by the GIFT method.  相似文献   

8.
Water in oil droplets are used to control the size of silver metal nanoparticles. After synthesis, the silver metal particles are extracted from reverse micelles and redispersed in a non polar solvent. By increasing the size of the water droplets the average size of silver nanoparticles increases from 2 nm to 7 nm with a rather high size distribution. To narrow the panicle distribution a size selected precipitation method is used. By deposition of a dilute solution containing the coated particles on a carbon grid, the particles arrange themselves in a monolayer organized in a hexagonal network. At high particle concentration, the particles are organized in multilayers forming microcrystals arranged in a face centered cubic structure. The optical properties of the silver nanoparticles isolated in micellar solution or self-assembled in 2D or 3D supperlattices are reported.  相似文献   

9.
Knowledge of the shape and size of surfactant micelles in the presence of small organic molecules is important for understanding the solubilization properties of micellar phases. In this work, structural information on micelles of mixed n-dodecyl-beta-d-maltoside (DM) and phenol, including the aggregation number, diffusion coefficient, and effective radius, was obtained using an analytical ultracentrifugation technique. The micelles were found to increase in size and undergo shape transition from quasispherical to cylindrical with an increase in the surfactant and phenol concentrations in the micellar phase. Importantly, the coexistence of different micellar species was observed in certain cases with the larger species double the size of the smaller one. Based on the results obtained, a two-step micellar growth model is proposed to describe the micelles shape transition in the system. In the first step, the micelles expand continuously, whereas in the second step, it undergoes a sudden shift from the existing micellar species to a larger species causing the coexistence of two micellar species. This micellar growth is attributed to molecular packing and intermicellar interaction energy parameters. The mechanism proposed can be applied to other mixed systems and utilized for devising chemicals for the efficient removal of pollutants.  相似文献   

10.
A deterministic method (frequency distribution method) for selecting compounds from a partitioned virtual combinatorial library for efficient synthesis is presented here. The method is based on reagent frequency analysis and can be applied to any library of molecules distributed in any given partitioned chemical space (cluster, cell-based, etc.). Compound selection by reagent frequency distribution can produce a unique, diverse set of molecules that adequately represents the library while requiring the least amount of compounds to be synthesized and minimizing the number of different reagents that must be used. This method also provides a practical solution to the configuration of plate layout. Because the method essentially identifies "expensive" regions in the chemical space to synthesize for a desired diversity or similarity coverage, decisions concerning the necessity to synthesize these compounds can be addressed. Minimum compound generation and efficient plate layout results in savings both in time of synthesis and cost of materials. This method always results in a discrete solution, which can be used for any given library size as well as any combination of reagents and is also readily adaptable to robotic automation.  相似文献   

11.
Data on the rheological properties of the hexadecyl-trimethylammonium salicylate system (CTAB-SA) in water are reported. Three concentrations were used (0.1, 0.01, and 0.001 M). For the highest concentration, the effect of temperature on the rheology was studied in detail.The rheology of the 0.1 M CTAB-SA solution indicates a very uniform micellar size. By contrast with concentrated polymethyl methycrylate dispersions studied by the author, there was a strong divergence between the viscosity-shear rate and viscosity-frequency data, although the plateau low shear rate and frequency values agreed over a wide range of temperature. This effect could be explained by a shear rate dependent diffusion constant. The large temperature variation of the plateau viscosity and elasticity modulus values could be explained by a combination of micellar number concentration and flexibility changes as the temperature varies.At lower concentrations, the rheological data shows evidence of polydispersity in micellar size. Strong shear thickening and extensional viscosity effects are also evident, probably due to micellar overlap and cluster formation in strong shear fields and the alignment of the very long micelles in elongational flow. The shear thickening effects take some 200 s to relax (0.01 M solution). Recovery of the elasticity after shearing the 0.1 M solution is rapid (a few hundred milliseconds).  相似文献   

12.
The reversible half-wave potential of the ferricinium/ferrocene redox couple in aqueous 0.2 M Li2SO4, (0.165±0.005) V vs. SCE, is determined directly by cyclic voltammetry of ferrocene, in spite of its poor solubility. The reversible half-wave potentials of this couple in cationic micellar solutions of alkyltrimethylammonium bromide are independent of the ferrocene concentration, showing that the pseudo-phase model or the Poisson distribution is applicable to these micellar solutions. The relation between the half-wave potentials in the water and the micellar solution is formulated on the basis of the micelle-solubilization equilibrium. The solubility data and the above half-wave potential data of ferrocene together offer corroborating evidence for the validity of this relation. This fact means that the voltammetric technique can be applied to a complicated micellar system to yield a clear-cut conclusion, and can be used in conjunction with the solubility measurement to determine the formal standard potential of a substance which is insoluble in water but can be solubilized in micellar solution.  相似文献   

13.
Multimolecular micelles, formed by polystyrene-block-poly(methacrylic acid) in water, are studied by lattice Monte Carlo method. Electrostatic interactions are calculated in the mean-field approximation by solving the Poisson-Boltzmann equation. The model is parametrized according to available experimental data. The dependence of micellar size on pH and ionic strength is calculated and compared with experimental data. A special attention is devoted to the behavior in solutions with a low ionic strength.  相似文献   

14.
We report a numerical study of the structure and phase behavior of a model for a triblock-copolymer solution. The aim of this study is to investigate the nature of the dense micellar phase that can form in such systems. The simulations were performed on a lattice model for PEO (poly(ethylene-oxide))-PPO (poly(propylene-oxide))-PEO polymers. At high volume fractions, the structure factor of the amphiphile-solvent system can be mapped onto that of a monodisperse hard-sphere fluid. Yet, a low-density hard-sphere model cannot account for the properties of the dilute micellar solution. Moreover, direct inspection of the snapshots of the suspension show that these model triblock-copolymer micelles are neither hard, nor spherical, nor monodisperse.  相似文献   

15.
We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.  相似文献   

16.
采用可逆加成-断裂链转移自由基聚合(RAFT)法合成了具有pH响应性的两亲嵌段共聚物聚苯乙烯-b-聚(2-乙烯基吡啶)(PS101-b-P2VP70),并以其胶束为"模板",通过氧化聚合制备聚苯胺(PANI).通过调节PS101-b-P2VP70胶束溶液的pH值,探究PANI颗粒形貌的可控调节及颗粒尺寸与PANI电化学性能之间的关系.利用凝胶渗透色谱(SEC)和核磁共振氢谱(1H NMR)确定了PS101-b-P2VP70的分子量分布及结构;利用傅里叶变换红外光谱(FTIR)、透射电子显微镜(TEM)、粒度测试、循环伏安(CV)、计时电位(Chronopotentio-metry)及交流阻抗谱(EIS)对PANI结构、形貌和电化学性能进行了表征.结果表明"模板"法合成的PANI形貌尺寸得到了很好的控制,在pH ≤ 4时其尺寸随pH值的增加而减小;当pH=5时,模板剂中P2VP段疏水性的明显增大导致其胶束颗粒聚集为尺寸较大的聚集体,并使其诱导的PANI颗粒平均粒径显著增大;当pH=4时PANI颗粒在溶液中的平均粒径为141 nm,呈"串状"形貌且分散性最好.PANI具有快速充放电能力和良好的赝电容特性,随颗粒尺寸减小样品电化学性能增强.pH=4时样品电化学活性最好,循环伏安曲线面积最大,放电比容量最高,在电流密度为1 A/g时,其放电比容量可达1411.88 F/g,且该样品阻抗值最小.  相似文献   

17.
The surface Green's function which is used in model calculations for chemisorption systems has been approximated by the tight-binding cluster Bethe lattice model (TBCBLM). It is shown that for chemisorption of a single-orbital atom on a simple cubic lattice this model yields results in good agreement with Einstein and Schríeffer's results. The effects of cluster size on the chemisorption properties are explored.  相似文献   

18.
A general approach is presented for spatially coarse-graining lattice kinetic Monte Carlo (LKMC) simulations of systems containing strongly interacting particles. While previous work has relied on approximations that are valid in the limit of weak interactions, here we show that it is possible to compute coarse-grained transition rates for strongly interacting systems without a large computational burden. A two-dimensional square lattice is employed on which a collection of (supersaturated) strongly interacting particles is allowed to reversibly evolve into clusters. A detailed analysis is presented of the various approximations applied in LKMC coarse graining, and a number of numerical closure rules are contrasted and compared. In each case, the overall cluster size distribution and individual cluster structures are used to assess the accuracy of the coarse-graining approach. The resulting closure approach is shown to provide an excellent coarse-grained representation of the systems considered in this study.  相似文献   

19.
The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)60(PO)40(EO)60 (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1?×?105 s?1, the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1?×?105 s?1, the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.  相似文献   

20.
通过对胶体扩散控制聚集机理的MonteCarlo模拟,表明粒子簇的布朗扩散系数与其大小和形状有关,粒子簇的大小分布可被标度.在微观或介观的层次上,揭示了表征粒子簇结构的几何形状因子在扩散控制聚集过程中对动态标度和粒子簇分布的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号