首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with <50-microm spatial resolution and <0.6-mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications.  相似文献   

2.
Li X  Ko TH  Fujimoto JG 《Optics letters》2001,26(23):1906-1908
We describe a miniature fiber-optic Doppler imaging catheter for integrated functional and structural optical coherence tomography (OCT) imaging. The Doppler catheter can map blood flow within a vessel as well as image vessel wall structures. A prototype Doppler catheter has been developed and demonstrated for measuring the intraluminal velocity profile in a vessel phantom (conduit). A simple mathematical model is demonstrated to estimate the total flow rate. This estimation technique also enables the spatial range of flow measurements to be extended by approximately two times the normal OCT image-penetration depth. The Doppler OCT catheter could be a powerful device for cardiovascular imaging.  相似文献   

3.
Retinal blood flow quantification by retinal vessel segmentation with Doppler optical coherence angiography is presented. Vessel diameter, orientation, and position are determined in an en face vessel image and two representative cross-sectional flow images of the vessel. Absolute blood flow velocity is calculated with the help of the measured Doppler frequency shift and determined vessel angle. The volumetric flow rate is obtained with the position and the region of the vessel lumen. The volumetric blood flow rate of retinal arteries before and after a bifurcation is verified in a healthy human eye.  相似文献   

4.
Monitoring blood flow velocity could have great value for biomedical research and clinical diagnostics. One of current restrictions to determine flow velocity by the use of Doppler optical coherence tomography (Doppler OCT) is that the Doppler angle should be predefined. However, from a practical point of view, it is not easy to predetermine Doppler angle for a flow beneath the tissue surface. In this work, a novel method for measuring both flow velocity and Doppler angle simultaneously by the use of Doppler OCT is proposed and demonstrated. Based on Doppler spectrum analysis, this technique measures both longitudinal and transverse components of flow velocity by detecting its Doppler shift and Doppler bandwidth to determine velocity and Doppler angle simultaneously. Such a technique extends flow velocity measurement into a broadening practical use of Doppler OCT where Doppler angle would not need to be predefined, for example, blood flow beneath the tissue surface. Therefore, with this technique, Doppler OCT could be applied to more practical diagnoses of microcirculation.  相似文献   

5.
Piao D  Otis LL  Zhu Q 《Optics letters》2003,28(13):1120-1122
Accurate estimation of flow velocity requires measurement of Doppler angle, which is not available in general clinical applications. We describe a novel method of direct Doppler angle and flow velocity mapping that uses a conventional single-beam optical Doppler tomography system. The Doppler angle is estimated by combination of Doppler shift and Doppler bandwidth measurements, and flow velocity is calculated from the Doppler shift and the estimated Doppler angle. In vivo study of lip microvascularization demonstrates that this method is capable of providing both flow speed and flow direction information.  相似文献   

6.
Kim J  Oh J  Milner TE  Nelson JS 《Optics letters》2006,31(6):778-780
We introduce a novel contrast mechanism for imaging blood flow by use of magnetomotive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect erythrocytes moving according to the field gradient. Hemoglobin contrast was demonstrated in a capillary tube filled with moving blood by imaging the Doppler frequency shift, which was observed independently of blood flow rate and direction. Results suggest that MM-ODT may be a promising technique with which to image blood flow.  相似文献   

7.
Color Doppler optical coherence tomography (CDOCT) is a recent innovation that allows spatially localized flow-velocity mapping simultaneously with microstructural imaging. We present a theoretical model for velocity-image formation in CDOCT. The proportionality between the heterodyne detector current Doppler power spectrum in CDOCT and the optical source power spectrum is established. We show that stochastic modifications of the Doppler spectrum by fluctuating scatterer distributions in the flow field give rise to unavoidable velocity-estimation inaccuracies as well as to a fundamental trade-off between image-acquisition rate and velocity precision. Novel algorithms that permit high-fidelity depth-resolved measurements of velocities in turbid media are also reported.  相似文献   

8.
Servo valves find their major application in high performance hydraulic control systems where the accurate control of position, velocity and load is essential. Because of this, it is important to determine the dynamic characteristics of the servo valve (i.e. flow rate as a function of input command signal) more precisely.Previous techniques for this evaluation depended on monitoring spool position using linear transducers, since flow measurement techniques capable of following fast transients and oscillating (or pulsating) flows were not easily applied. The introduction of the laser Doppler anemometer changes this. Steady state flow measurement, using the dual beam scatter system, is now common but since it needs a spectrum analyser to measure the Doppler frequency it is not suitable for unsteady flow. Since hydraulic systems are relatively particle free, the Doppler signals are dreceived intermittently. Because of this, a signal processing system has been developed which measures the period of one or more oscillations in the frequency burst caused by a scattering particle passing through the control volume.Using this technique steady and unsteady laminar flow profiles have been measured in order to assess its effectiveness in the performance testing of hydraulic servo systems.  相似文献   

9.
The development of atherosclerosis has been shown to correlate with regions of low wall shear stress and seemingly reduced mass transport. The local tortuosity of the arteries and local secondary flow oscillation also seem to be negatively correlated with the local occurrence of the disease. However there is currently no tool or physiological parameter that can be measured non-invasively to assess the local oscillation of the flow. Standard Colour Doppler imaging of secondary flow patterns during the blood pulse is studied and illustrated, and the local oscillation of the secondary flow pattern is proposed as an index, which could be an indicator of the likelihood of future disease development. Preliminary results are presented using a basic estimator developed for the proof of concept in the case of swirling flow, and based on colour-coded video signals collected in different configurations. In vitro results show that there is a correspondence between the Doppler patterns and the secondary flow patterns, the repeatability of the measures, and that the proposed index and its estimator reflect a joint influence of the local oscillation of the secondary flow pattern and of the flow rate. On another hand, while in vivo results still suffer from instabilities, noise and from scanners and processing limitations, they demonstrate that it is possible to use Colour Doppler imaging to image and characterize in vivo the secondary flow patterns and their oscillations non-invasively, and that it is possible for a trained clinician to perform manually such Doppler measurements for processing.  相似文献   

10.
传统超声彩色多普勒成像测量的是血流沿超声传播方向上的速度分量,故无法得到垂直于超声传播方向的血流。向量血流成像是一种更加先进的超声血流成像技术。它不受角度限制,可以直接计算出血流速度的大小和方向。本文总结了现有多种超声向量血流成像技术的特点和发展情况,并从产品化实现的角度分析了各项技术的优缺点。从超声系统发射接收、血流成像、向量速度方向合成、显示等几个方面详述了迈瑞超声向量血流成像技术产品化实现过程中遇到的主要问题及解决方案。实验采用了中科院声学所研制的超声多普勒仿血流体模,通过向量血流成像和脉冲多普勒成像分别测量体模的仿血流速度。将向量血流成像直接计算出来的速度值与脉冲多普勒经过角度校正得到的速度进行对比。在不同条件下,经过多次测量,二者的平均相对误差均在10%以内。  相似文献   

11.
The purpose of this work was to characterize the spray delivered by a modulated liquid fuel injector designed for active combustion control applications. A novel actuator is used to create a time-varying liquid fuel flow rate upstream of a commercially available injector. In order to be useful in existing burners, the actuator must not degrade the spray, by changing either the size or velocity distributions of the droplets produced by the injector. The amplitude of the induced modulations in flow rate must be strong enough to induce the required periodicity in heat release rate. This paper reports the results obtained from particle imaging velocimetry and phase Doppler anemometry used to characterize the spray, plus hot-film anemometry and pressure transducer measurements used to characterize the response of the fuel line to the induced flow rate fluctuations and to measure the excitation amplitude. It is found that the actuator response time is sufficiently rapid to modulate the liquid flow rate without changing the spray characteristics. Strong modulation of the flow rate is possible at low forcing frequencies, but the time-averaged flow rate is reduced. At higher forcing frequencies, the actuator response time cuts off, leading to a smaller amplitude flow rate modulation, and a relatively unchanged time-averaged fuel flow rate. For these reasons, this actuator is well suited to the control applications envisaged.  相似文献   

12.
Zhao Y  Chen Z  Ding Z  Ren H  Nelson JS 《Optics letters》2002,27(2):98-100
We have developed a novel real-time phase-resolved functional optical coherence tomography system that uses optical Hilbert transformation. When we use a resonant scanner in the reference arm of the interferometer, with an axial scanning speed of 4 kHz, the frame rate of both structural and Doppler blood-flow imaging with a size of 100 by 100 pixels is 10 Hz. The system has high sensitivity and a larger dynamic range for measuring the Doppler frequency shift that is due to moving red blood cells. Real-time images of in vivo blood flow in human skin obtained with this interferometer are presented.  相似文献   

13.
P. Atkinson 《Ultrasonics》1975,13(6):275-278
A novel ultrasonic velocimeter is described and evaluated with a view to measuring blood flow in vivo. The device is not based on the Doppler principle but operates by analysing the random fluctuations of the echo backscattered by blood. The rate at which the amplitude of the reflected signal passes through its mean level is related (by the dimensions of the resolution cell) to the velocity of the scatterers. Experimental trials in vitro validate the concept although there is a factor of two disagreement with predictions. The device is compared with the conventional Doppler velocimeter and problems of operation in vivo are discussed.  相似文献   

14.
Kee HH  Lees GP  Newson TP 《Optics letters》1998,23(5):349-351
We describe both theoretical and experimental results obtained in an investigation of a new technique for increasing the dynamic range of 1.65-microm optical time domain-reflectometry (OTDR) systems. The technique utilizes delayed Raman amplification of a 1.65-microm signal pulse by a 1.53-microm pump pulse. Amplification occurs when the two pulses overlap, and this position is determined by the initial delay between the pulses and the fiber dispersion. An increase in dynamic range of 17.5 dB has been observed, and the OTDR backscattered Rayleigh signal was detected up to 100 km. No significant noise penalty is introduced as a result of the directionality of the Raman gain.  相似文献   

15.
光学相干层析多普勒成像功能拓展研究   总被引:8,自引:0,他引:8  
光学多普勒成像(Optical Doppler tomography,ODT)是一种结合了光学相干层析成像技术(Opticalcoherence tomography,OCT)和多普勒流速仪的非侵入、非接触的成像技术,能够实现对高散介质组织内部的血管分布和血液流速的探测。阐述了基于数字希尔伯特变换的相位分离多普勒光学相干层析成像技术的工作原理,并且通过对玻璃毛细管和生物芯片微通道管中聚苯乙烯溶液流速的实验测量,准确测量管内微粒缓慢移动时的多普勒频移量,获得了玻璃管内和生物芯片微通道管中流速分布曲线,证实了所提方法的可行性。获取的多普勒图像具有较高的空间分辨力和速度分辨力,在未来的临床应用中有潜在的应用价值。  相似文献   

16.
Ren H  Brecke KM  Ding Z  Zhao Y  Nelson JS  Chen Z 《Optics letters》2002,27(6):409-411
The Doppler bandwidth extracted from the standard deviation of the frequency shift in phase-resolved functional optical coherence tomography (F-OCT) was used to image the velocity component that is transverse to the optical probing beam. It was found that above a certain threshold level the Doppler bandwidth is a linear function of flow velocity and that the effective numerical aperture of the optical objective in the sample arm determines the slope of this dependence. The Doppler bandwidth permits accurate measurement of flow velocity without the need for precise determination of flow direction when the Doppler flow angle is within +/-15 degrees perpendicular to the probing beam. Such an approach extends the dynamic range of flow velocity measurements obtained with the phase-resolved F-OCT.  相似文献   

17.
曹新亮  崔巍 《应用声学》2017,36(2):148-154
为了提高超声波多普勒法测量复杂流体流量的精度,针对流体的超声回波频率的复杂性,本文研究多普勒流速测量中的频偏提取方法。以傅里叶分析为理论基础,设计了硬件电路并获得代表回波平均频率的信号,然后以该信号作为输入,以数字鉴频法获得回波多普勒频移。基于该方法设计了一种超声多普勒流量测量系统,实验结果显示:油水混合流体流量的测量误差在3%以内,从而证实了此频偏提取方法的有效性。  相似文献   

18.
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.  相似文献   

19.
Nitric oxide (NO) plays an important role in regulation of central and peripheral circulation in normal state and during hemorrhagic stress. Because the impaired gastric mucosal blood flow is the major cause of gastroduodenal lesions including ulcer bleeding (UB), we study in this work the NO-ergic mechanism responsible for regulation of this blood flow. Our study is performed in rats with a model of stress-induced UB using laser Doppler flowmetry (LDF) that characterizes the rate of blood flow by measuring a Doppler shift of the laser beam scattered by the moving red blood cells. Numerical analysis of LDF-data is based on the discrete wavelet-transform (DWT) using Daubechies wavelets aiming to quantify influences of NO on the gastric microcirculation. We show that the stress-induced UB is associated with an increased level of NO in the gastric tissue and a stronger vascular sensitivity to pharmacological modulation of NO-production by L-NAME. We demonstrate that wavelet-based analyses of NO-dependent regulation of gastric microcirculation can provide an effective endoscopic diagnostics of a risk of UB.  相似文献   

20.
We report on optical parametric oscillators (OPO's) based on periodically poled RbTiOAsO(4) (PP RTA), which are pumped by Q -switched solid-state lasers. With a diode-pumped Nd:YVO(4) laser (pulse energy, 800microJ ; pulse duration, 5.5 ns; repetition rate, 1 kHz) the PP RTA OPO generated 1.58-microm signal and 3.26-microm idler radiation with a signal pulse energy of 45microJ . The large aperture of 3 mmx3 mm of the PP RTA crystal also permitted OPO operation with pump pulse energies as high as 65 mJ, provided by a flash-lamp-pumped Q -switched Nd:YAG laser (pulse duration, 20 ns; repetition rate, 10 Hz). With this pump source the OPO generated signal pulse energies as high as 17 mJ, corresponding to an efficiency of 26%. The performance of this OPO shows that large-aperture PP RTA crystals are well suited for pulsed nanosecond OPO operation with pump pulse energies of tens of millijoules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号