首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A survey is given about two-dimensional (2D) NMR experiments on solid polymers involving 2H- and 13C-NMR. 2D exchange NMR spectra of static samples directly reflect the distribution of rotational angles resulting from ultraslow molecular motions. Typical examples are the chain motion above the glass transition or rotations around a helix axis in semi-crystalline polymers. 2D-Magic angle spinning not only allows the detection of molecular order and motion. By combining rotor synchronized MAS with rotations in spin space the correlation of order and mobility can be studied.  相似文献   

4.
This critical review highlights recent advances in using electronic structure methods to study surface-enhanced Raman scattering. Examples showing how electronic structure methods, in particular time-dependent density functional theory, can be used to gain microscopic insights into the enhancement mechanism are presented (150 references).  相似文献   

5.
Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) has become a key technique for monitoring structural and dynamic aspects of proteins in solution. This approach relies on the fact that exposure of a protein to D(2)O induces rapid amide H → D exchange in disordered regions that lack stable hydrogen-bonding. Tightly folded elements are much more protected from HDX, resulting in slow isotope exchange that is mediated by the structural dynamics ("breathing motions") of the protein. MS-based peptide mapping is a well established technique for measuring the mass shifts of individual protein segments. This tutorial review briefly discusses basic fundamentals of HDX/MS, before highlighting a number of recent developments and applications. Gas phase fragmentation strategies represent a promising alternative to the traditional proteolysis-based approach, but experimentalists have to be aware of scrambling phenomena that can be encountered under certain conditions. Electron-based dissociation methods provide a solution to this problem. We also discuss recent advances that facilitate the applicability of HDX/MS to membrane proteins, and to the characterization of short-lived protein folding intermediates. It is hoped that this review will provide a starting point for novices, as well as a useful reference for practitioners, who require an overview of some recent trends in HDX/MS.  相似文献   

6.
Fluorescence quenching methods are useful to obtain information about the conformational and/or dynamic changes of proteins in complex macromolecular systems. In this review steady-state methods are described and the data interpretation is thoroughly discussed. As a special case of fluorescence quenching mechanism, fluorescence resonance energy transfer (FRET) phenomenon is also presented. Application of a FRET based method to characterize the temperature dependence of the flexibility of protein matrix is clearly demonstrated.  相似文献   

7.
The HNCO NMR pulse sequence was applied to three selectively labeled (15)N and (13)C isotopic homologues of the peptide Ac-WAAAH(AAARA)(3)A-NH(2) to probe directly for hydrogen bonds between residues 8 and 11 (characteristic of a 3(10)-helix), 8 and 12 (alpha-helix), and 8 and 13 (pi-helix). The experiments demonstrate conclusively, and in agreement with circular dichroism studies, that the center of the peptide is alpha-helical; there is no discernible 3(10)- or pi-helix at these specific positions. Molecular dynamics simulations of the preceding peptide and Ac-(AAAAK)(3)A-NH(2) in water using the potential energy parameter set CHARMM22/CMAP correctly yield an alpha-helix, in contrast to simulations with the set CHARMM22, which result in a pi-helix.  相似文献   

8.
A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component analysis of the isotropically averaged covariance matrix of the lattice functions of the spin interactions responsible for spin relaxation. The covariance matrix, which is evaluated using a molecular dynamics (MD) simulation, is diagonalized yielding reorientational eigenmodes and amplitudes that reveal detailed information about correlated protein dynamics. The eigenvalue distribution allows one to quantitatively assess whether overall and internal motions are statistically separable. To each eigenmode belongs a correlation time that can be adjusted to optimally reproduce experimental relaxation parameters. A key feature of the method is that it does not require separability of overall tumbling and internal motions, which makes it applicable to a wide range of systems, such as folded, partially folded, and unfolded biomolecular systems and other macromolecules in solution. The approach was applied to NMR relaxation data of ubiquitin collected at multiple magnetic fields in the native form and in the partially folded A-state using MD trajectories with lengths of 6 and 70 ns. The relaxation data of native ubiquitin are well reproduced after adjustment of the correlation times of the 10 largest eigenmodes. For this state, a high degree of separability between internal and overall motions is present as is reflected in large amplitude and collectivity gaps between internal and overall reorientational modes. In contrast, no such separability exists for the A-state. Residual overall tumbling motion involving the N-terminal beta-sheet and the central helix is observed for two of the largest modes only. By adjusting the correlation times of the 10 largest modes, a high degree of consistency between the experimental relaxation data and the iRED model is reached for this highly flexible biomolecule.  相似文献   

9.
10.
J. W. Emsley 《Liquid crystals》2005,32(11):1515-1524
The understanding of how to describe the orientational order of the molecules in liquid crystalline phases, and in the isotropic phase formed by mesogens, has undergone considerable development in the past 25 years; this progress is reviewed. In parallel with the theoretical developments it has also been shown that NMR spectroscopy plays a unique role in the measurement of the orientational order of the molecules, and it is explained how biaxial ordering can be characterized for rigid molecules, and how the conformationally-dependent order parameters necessary for flexible molecules can be obtained.  相似文献   

11.
One-dimensional (1D) exchange NMR experiments can elucidate the geometry, time scale, memory, and heterogeneity of slow molecular motions (1 ms-1 s) in solids. The one-dimensional version of pure-exchange (PUREX) solid-state exchange NMR, which is applied to static samples and uses the chemical shift anisotropy as a probe for molecular motion, is particularly promising and convenient in applications where site resolution is not a problem, i.e., in systems with few chemical sites. In this work, some important aspects of the 1D PUREX experiment applied to systems with complex molecular motions are analyzed. The influence of intermediate-regime (10 micros-1 ms) motions and of the distribution of reorientation angles on the pure-exchange intensity are discussed, together with a simple method for estimating the activation energy of motions occurring with a single correlation time. In addition, it is demonstrated that detailed information on the motional geometry can be obtained from 1D PUREX spectral line shapes. Experiments on a molecular crystal, dimethyl sulfone, confirm the analysis quantitatively. In two amorphous polymers, atactic polypropylene (aPP) and polyisobutylene (PIB), which differ only by one methyl group in the repeat unit, the height of the normalized exchange intensity clearly reveals a striking difference in the width of the distribution of correlation times slightly above the glass transition. The aPP shows the broad distribution and Williams-Landel-Ferry temperature dependence of correlation times typical of polymers and other "fragile" glass formers. In contrast, the dynamics in PIB occur essentially with a single correlation time and exhibits Arrhenius behavior, which is more typical of "strong" glass formers; this is somewhat surprising given the weak intermolecular forces in PIB.  相似文献   

12.
13.
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combining the accuracy of the measured scalar coupling constants and the atomistic detail of the all-atom MD simulations with explicit solvent, the thermal populations of the peptide conformational states are determined with an uncertainty of <5 %. Trialanine samples mainly ( approximately 90%) a poly-l-proline II helix-like structure, some ( approximately 10%) beta extended structure, but no alphaR helical conformations. No significant change in the distribution of conformers is observed with increasing chain length (Ala(3) to Ala(7)). Trivaline samples all three major conformations significantly. Triglycine samples the four corner regions of the Ramachandran space and exists in a slow conformational equilibrium between the cis and trans conformation of peptide bonds. The backbone angle distribution was also studied for the segment Ala3 surrounded by either three or eight amino acids on both N- and C-termini from a sequence derived from the protein hen egg white lysozyme. While the conformational distribution of the central three alanine residues in the 9mer is similar to that for the small peptides Ala(3)-Ala(7), major differences are found for the 19mer, which significantly (30-40%) samples alphaR helical stuctures.  相似文献   

14.
The aim of present paper is to study the stability of (argon + large guest molecules) structure H clathrate-hydrates by using molecular dynamics simulations and with employing the COMPASS force field to consider the molecular interactions. The simulations are performed by embedding the structure H clathrate-hydrates in a simulation cell under isobaric-isothermal (NPT) conditions. The obtained equilibrium lattice parameters are compared with the experimental data, where a good consistency is observed. The results show that the size and dipole moment of the guest molecules enclosed in the hydrate cages play the main role in the interactions between the guest molecules and the water molecules, which constitute the surrounding walls of the hydrate cage and these interactions would stabilize the hydrate structure. The characteristics of the clathrate-hydrate structure are analyzed by evaluating the radial distribution function, where the agreement between the results obtained in this work and other similar theoretical and experimental investigations validates the simulation procedure and related interpretations.  相似文献   

15.
We report the first example of 17O NMR spectra from a selectively labeled transmembrane peptide, 17O-[Ala12]-WALP23, as a lyophilized powder and incorporated in hydrated phospholipid vesicles. It is shown that at high magnetic field it is feasible to apply 17O NMR to the study of membrane-incorporated peptides. Furthermore, we were able to estimate distances within the selectively labeled WALP peptide, which represents a consensus transmembrane protein sequence. This work opens up new applications of 17O solid-state NMR on biological systems.  相似文献   

16.
Pulsed deuteron NMR is described, which recently has been developed to become a powerful tool for studying structure and molecular dynamics in solid polymers. The techniques that have been developed in this area are described, analyzing the response of the I = 1 spin system to the solid echo two-pulse and the Jeener-Broekaert three-pulse sequence, respectively. By applying these techniques to selectively deuterated polymers, slow rotational motions involving different segments of the monomer unit can be monitored over a range of approximately 8 orders of magnitude of characteristic frequencies. In addition, motional heterogeneities can be detected. In drawn fibres the complete orientational distribution of the polymer chains can be determined from the analysis of deuteron NMR line shapes. The techniques are illustrated by experimental examples including order and chain mobility in the amorphous regions of linear polyethylene, chain dynamics of polystyrene in the vicinity of the glass transition and the phenyl motion in polycarbonate.  相似文献   

17.
A novel iterative procedure is described that allows both the orientation and dynamics of internuclear bond vectors to be determined from direct interpretation of NMR dipolar couplings, measured under at least three orthogonal alignment conditions. If five orthogonal alignments are available, the approach also yields information on the degree of motional anisotropy and the direction in which the largest amplitude internal motion of each bond vector takes place. The method is demonstrated for the backbone (15)N-(1)H, (13)C(alpha)-(1)H(alpha), and (13)C(alpha)-13C' interactions in the previously well-studied protein domain GB3, dissolved in a liquid crystalline suspension of filamentous phage Pf1. Alignment variation is achieved by using conservative mutations of charged surface residues. Results indicate remarkably uniform backbone dynamics, with amplitudes that agree well with those of previous (15)N relaxation studies for most residues involved in elements of secondary structure, but larger amplitude dynamics than those found by (15)N relaxation for residues in loop and turn regions. In agreement with a previous analysis of dipolar couplings, the N-H bonds in the second beta-strand, which is involved in antibody recognition, show elevated dynamics with largest amplitudes orthogonal to the chain direction.  相似文献   

18.
The high-resolution structure of membrane proteins is notoriously difficult to determine due to the hydrophobic nature of the protein-membrane complexes. Solid-state NMR spectroscopy is a unique and powerful atomic-resolution probe of the structure and dynamics of these important biological molecules. A number of new solid-state NMR methods for determining the depth of insertion, orientation, oligomeric structure, and long-range (10-15 A) distances of membrane proteins are summarized. Membrane protein depths can now be determined using several complementary techniques with varying site-specificity, distance precision, and mobility requirement on the protein. Membrane protein orientation can now be determined with or without macroscopic alignment, the latter providing a novel alternative for orientation determination of intrinsically curvature-inducing proteins. The novel analyses of beta-sheet membrane protein orientation are described. The quaternary structure of membrane peptide assemblies can now be elucidated using a 19F spin diffusion technique that simultaneously yields the oligomeric number and intermolecular distances up to 15 A. Finally, long-range distances up to approximately 10 A can now be measured using 1H spins with an accuracy of better than 1 A. These methods are demonstrated on several beta-sheet membrane peptides with antimicrobial activities and on two alpha-helical ion-channel proteins. Finally, we show that the nearly ubiquitous dynamics of membrane proteins can be readily examined using 2D correlation experiments. An intimate appreciation of molecular motion in these systems not only leads to important insights into the specific function of these membrane proteins but also may be exploited for other purposes such as orientation determination.  相似文献   

19.
20.
1H and 13C NMR spectra and 1H spin-lattice relaxation times T1 and T1ρ have been employed to study the structure and molecular dynamics in polyethylene and ethylene-1-butene copolymer in the temperature range from 100 to 370 K. Results are interpreted in terms of α, β and γ -relaxation, as well as methyl group rotation. The activation energies for all motions were established. The incorporation of 1-butene into ethylene chain leads to an increase of mobility in amorphous and crystalline phases as well as appearance the 13C resonance characteristic to the monoclinic structure in addition to the orthorhombic observed in both polymers. The crystallinity degree derived from T1ρ in studied polymers is close to that determined using DSC method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号