首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adiabatic double-quantum polarization-transfer experiment is described. It can be characterized as an adiabatic variant of the POST-C7 experiment. A continuous variation of the phase increment between pulses leads to the introduction of a fictitious Zeeman field that allows for an adiabatic passage through the recoupling condition. This results in a chemical-shift-offset-compensated adiabatic experiment, which leads to an efficient and broadbanded polarization transfer or to a double-quantum excitation. Similar variations of other C- or R-type experiments can be envisioned.  相似文献   

2.
It is shown how coherence lifetimes in solid-state NMR experiments can be controlled. New decoupling schemes are introduced which actively optimize dephasing times, providing increases of up to a factor of 2 with respect to the best existing schemes. The new schemes are implemented in transverse-dephasing-optimized (TDOP) NMR experiments for the disorded solid cellulose, and for a microcrystalline protein, where sensitivity improvements of up to a factor of 5 are obtained.  相似文献   

3.
《Chemical physics letters》1987,137(4):324-329
A generalized pulse pair has been suggested in which the longitudinal spin order is retained and the transverse components cancelled by random variation of the interval between pulses, in successive applications of the two-dimensional NMR algorithm. This method leads to pure phases and has been exploited to provide a simpler scheme for two-spin filtering and for pure phase spectroscopy in multiple-quantum-filtered two-dimensional NMR experiments.  相似文献   

4.
The investigation of 1H-1H spin-diffusion build-up curves using a rate matrix analysis approach shows that high-resolution magic angle spinning NMR of protons, applied to powdered organic compounds, provides a method to probe crystalline arrangements. The comparison between experimental 1H data and simulation is shown to depend strongly on the parameters of the crystal structure, for example on the unit cell parameters or the orientation of the molecule in the unit cell, and those parameters are experimentally determined for a model organic compound.  相似文献   

5.
A new spinning-angle-encoding spin-echo solid-state NMR approach is used to accurately determine the dipolar coupling corresponding to a C-C distance over 4 ? in a fully labelled dipeptide. The dipolar coupling dependent spin-echo modulation was recorded off magic angle, switching back to the magic angle for the acquisition of the free-induction decay, so as to obtain optimum sensitivity. The retention of both ideal resolution and long-range distance sensitivity was achieved by redesigning a 600 MHz HX MAS NMR probe to provide fast angle switching during the NMR experiment: for 1.8 mm rotors, angle changes of up to ~5° in ~10 ms were achieved at 12 kHz MAS. A new experimental design that combines a reference and a dipolar-modulated experiment and a master-curve approach to data interpretation is presented.  相似文献   

6.
7.
Based on continuous methodical advances and developments, solid-state NMR spectroscopy has become a powerful tool for the investigation of various materials, including polymers, glasses, zeolites, fullerenes, and many others. During the past decade, solid-state NMR spectroscopy also found increasing interest for the study of biomolecules. For example, membrane proteins reconstituted into lipid environments such as bilayers or vesicles, protein aggregates such as amyloid fibrils, as well as carbohydrates can now be studied by solid-state NMR spectroscopy. This review briefly introduces the principles of solid-state NMR spectroscopy and highlights novel methodical trends. Selected applications demonstrate the possibilities of solid-state NMR spectroscopy as a valuable bioanalytical tool.  相似文献   

8.
Even as available magnetic fields for NMR continue to increase, resolution remains one of the most critical limitations in assigning and solving structures of larger biomolecules. Here we present a novel constant-time through-bond correlation spectroscopy for solids that offers superior resolution for 13C chemical shift assignments in proteins. In this experiment, the indirect evolution and transfer periods are combined into a single constant time interval, offering increased resolution while not sacrificing sensitivity. In GB1, this allows us to resolve peaks that are otherwise unresolved and to make assignments in the absence of multibond transfers.  相似文献   

9.
10.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

11.
 The on-line detection of emulsion polymerization processes by means of solid-state NMR spectroscopy is demonstrated for the first time using poly(butyl acrylate) as a model system. Relatively short time intervals are accessible via 1H detection while the use of 13C NMR spectroscopy results in an increased spectral resolution. Details of sample preparation and experimental techniques are given, while remaining artifacts of the preliminary results will be addressed in further investigations. Received: 7 November 1997 Accepted: 5 January 1998  相似文献   

12.
A refocused INEPT through-bond coherence transfer technique is demonstrated for NMR of rigid organic solids and is shown to provide a valuable building block for the development of NMR correlation experiments in biological solids. The use of efficient proton homonuclear dipolar decoupling in combination with a direct spectral optimization procedure provides minimization of the transverse dephasing of coherences and leads to very efficient through-bond (1)H-(13)C INEPT transfer for crystalline organic compounds. Application of this technique to 2D heteronuclear correlation spectroscopy leads to up to a factor of 3 increase in sensitivity for a carbon-13 enriched sample in comparison to standard through-bond experiments and provides excellent selectivity for one-bond transfer. The method is demonstrated on a microcrystalline sample of the protein Crh (2 x 10.4 kDa).  相似文献   

13.
Multinuclear solid-state NMR spectroscopy and powder X-ray diffraction (XRD) experiments are applied to comprehensively characterize a series of pure and lanthanide-doped LaF3 nanoparticles (NPs) that are capped with di-n-octadectyldithiophosphate ligands (Ln3+ = diamagnetic Y3+ and Sc3+ and paramagnetic Yb3+ ions), as well as correlated bulk microcrystalline materials (LaF3, YF3, and ScF3). Solid-state 139La and 19F NMR spectroscopy of bulk LaF3 and the LaF3 NPs reveal that the inorganic core of the NP retains the LaF3 structure at the molecular level; however, inhomogeneous broadening of the NMR powder patterns arises from distributions of 139La and 19F NMR interactions, confirming a gradual change in the La and F site environments from the NP core to the surface. 139La and 19F NMR experiments also indicate that low levels (5 and 10 mol %) of Ln3+ doping do not significantly change the LaF3 structure in the NP core. Similar doping levels of paramagnetic Yb3+ ions severely broaden 19F resonances, but only marginally effect 139La powder patterns, suggesting that the dopant ions are uniformly distributed throughout the NP core and occupy vacant La sites. Measurements of 139La T1 and T2 relaxation constants are seen to vary between the bulk material and NPs and between samples with diamagnetic and paramagnetic dopants. 45Sc NMR experiments confirm that the dopants are integrated into the La sites of the LaF3 core. Solid-state 1H and 31P magic-angle spinning (MAS) NMR spectra aid in probing the nature of the capping ligands and their interactions at the NP surface. 31P cross-polarization (CP)/MAS NMR experiments identify not only the dithiophosphate head groups but also thiophosphate and phosphate species which may form during NP synthesis. Finally, 19F-31P CP/MAS and 1H MAS experiments confirm that ligands are coordinated to the NP surface.  相似文献   

14.
A highly sensitive new 1H-detected 3D solid-state NMR method is described for characterizing 1H-1H spin exchange in nanocrystalline samples of 15N- and 2H-enriched protein. Long-range contacts are observed in human ubiquitin. The method is also used to show that numerous NOEs between backbone amides and crystal water protons can be observed.  相似文献   

15.
A two-state Markov noise process for lattice fluctuations and chemical exchange dynamics is used to derive a stochastic Liouville equation describing the evolution of the spin-density operator in nuclear magnetic resonance spectroscopy. Relaxation through lattice fluctuations and chemical exchange processes is incorporated into the theory at the same fundamental level, and the results are valid for all time scales provided that lattice fluctuations are much faster than chemical exchange kinetics. Time-scale separation emerges as an essential feature from the lowest-order perturbation expansion of the average resolvent in the Laplace domain.  相似文献   

16.
NMR spectra of (14)N (spin I=1) are obtained by indirect detection in powders spinning at the magic angle. The method relies on the transfer of coherence from a neighboring "spy" nucleus with S=1/2, such as (13)C or (1)H, to single- or double-quantum transitions of (14)N nuclei. The transfer of coherence can occur through a combination of scalar and residual dipolar splittings (RDS); the latter are also known as second-order quadrupole-dipole cross terms. The two-dimensional NMR spectra reveal powder patterns determined by second- and third-order quadrupolar couplings. These spectra depend on the quadrupolar coupling constant C(Q) (typically a few megahertz), on the asymmetry parameter eta(Q) of the (14)N nucleus, and on the orientation of the internuclear vector r(IS) between the I ((14)N) and S (spy) nuclei with respect to the quadrupolar tensor. These parameters, which can be subject to motional averaging, can reveal valuable information about the structure and dynamics of nitrogen-containing solids. Application of this technique to various amino acids, either enriched in (13)C or with natural carbon isotope abundance, with spectra recorded at various magnetic fields, illustrates the scope of the method.  相似文献   

17.
High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site.  相似文献   

18.
Membranes made from three specifically deuterium-labeled ether-linked bolalipids, [1',1',20',20'-2H4]C20BAS-PC, [2',2',19',19'-2H4]C20BAS-PC, or [10',11'-2H2]C20BAS-PC, were analyzed by 2H NMR spectroscopy. Unlike more common monopolar, ester-linked phospholipids, C20BAS-PC exhibits a high degree of orientational order throughout the membrane and the sn-1 chain of the lipid initially penetrates the bilayer at an orientation different from that of the bilayer normal, resulting in inequivalent deuterium atoms at the C1 position. The approximate hydrophobic layer thickness and area per lipid are 18.4 A and 60.4 A2, respectively, at 25 degrees C, and their respective thermal expansion coefficients are within 20% of the monopolar phospholipid, DLPC.  相似文献   

19.
High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.  相似文献   

20.
Proton-driven 13C spin diffusion (PDSD) is a simple and robust two-dimensional NMR experiment. It leads to spectra with a high signal-to-noise ratio in which cross-peaks contain information about internuclear distances. We show that the total information content is sufficient to determine the atomic-resolution structure of a small protein from a single, uniformly 13C-, 15N-labeled microcrystalline sample. For the example of ubiquitin, the structure was determined by a manual procedure followed by an automatic optimization of the manual structure as well as by a fully automated structure determination approach. The relationship between internuclear distances and cross-peak intensities in the spectra is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号