首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 31 毫秒
1.
建立了固相萃取-浓硫酸净化-气相色谱/三重四极杆串联质谱(SPE-GC-MS/MS)分析水中8种多溴联苯醚(PBDEs,BDE-28,BDE-47,BDE-99,BDE 100,BDE-153,BDE-154,BDE-183和BDE-209)的方法。方法采用改进的色谱柱可同时分析高溴代联苯醚BDE209,采用浓硫酸净化固相萃取后的样品和串联质谱特有的多反应监测模式,可以很好地去除基质干扰和提高定性的准确性。通过优化三重四极杆串联质谱的碰撞电压、扫描峰宽和离子对等条件,使8种多溴联苯醚的检测灵敏度显著提高。8种多溴联苯醚的浓度在0.1~50 ng/mL(BDE209:1~500 ng/mL)范围内线性良好,回归系数均大于0.9997。方法回收率在49%~110%,相对标准偏差在1.4%~6.0%之间。方法可用于实际地表水体中PBDEs的定量检测。  相似文献   

2.
张晓玲  王炳玲  陆晓梅  张琦  张正东 《色谱》2012,30(12):1241-1245
建立了室内灰尘样品中8种常见多溴联苯醚(PBDEs: BDE-28、BDE-47、BDE-99、BDE-100、BDE-153、BDE-154、BDE-183和BDE-209)的气相色谱-负化学电离源质谱(GC-NCI/MS)分析方法。样品经吸尘器采集、正己烷超声萃取、浓缩后,采用GC-NCI/MS测定。结果表明,方法的加标回收率为53.2%~107.6%,日内测定的相对标准偏差(RSD)为2.8%~16.5%,日间测定的RSD为6.4%~22.6%。除了BDE-209的检出限(信噪比为3)为0.15 ng/g外,其他多溴联苯醚的检出限为0.003~0.015 ng/g。该方法灵敏度高,准确度和精密度好,简便快速,溶剂消耗量少,适用于灰尘中三溴~十溴联苯醚的测定。  相似文献   

3.
本研究建立了贝类中8种指示性多溴联苯醚BDE-28、BDE-47、BDE-99、BDE-100、BDE-153、BDE-154、BDE-183和BDE-209的气相色谱/质谱联用检测方法。样品经正己烷-丙酮(1∶1,V/V)提取,采用改进的QuEChERS技术EMR-Lipid净化粉及浓H_2SO_4氧化净化。色谱选用短柱长、薄液膜的DB-5MS毛细管柱(15m×0.25mm×0.10μm),质谱以选择离子模式(SIM)监测,内标法定量,实现了贝类样品中低溴代及高溴代联苯醚的同时快速定性和定量分析。结果表明,8种目标多溴联苯醚类的检出限(LOD,S/N3)除BDE-209为1.0μg/kg,其余为0.1μg/kg,定量限(LOQ,S/N10)除BDE-209为3.0μg/kg,其余为0.3μg/kg;三个不同浓度的加标回收率在90.0%~120%之间,相对标准偏差皆小于10%。该方法的准确度和灵敏度较高,重现性好,且操作简便、高效,适合于贝类样品中多溴联苯醚类残留的同时检测。  相似文献   

4.
将超声辅助碱液分解杂质与溶剂萃取相结合,采用气相色谱-电子捕获检测(GC-ECD)建立了一种快速高效净化、萃取海洋沉积物中8种常见多溴联苯醚(PBDEs)的分析方法。样品在2.00 mol/L NaOH甲醇溶液中超声30 min,经正己烷萃取、单层硅胶净化、正己烷洗脱、旋蒸浓缩后定容至100 μL,采用GC-ECD分析。结果表明,PBDEs各单体的加标回收率为63.6%~110.3%,相对标准偏差(RSD)为1.7%~15.5%(n=5);十溴联苯醚(BDE-209)的检出限为0.097 ng/g,其他7种单体的检出限为0.002~0.011 ng/g(信噪比为3)。该方法的准确度和精密度较高,稳定性和回收率良好,可满足沉积物中PBDEs的分析要求。利用建立的方法测定了渤海表层沉积物中PBDEs的含量,8种PBDEs总含量在1.566~6.760 ng/g之间,其中BDE-209的含量为1.461~6.438 ng/g,总体呈现出由近岸向远岸递减的趋势,表明人为活动、表层冲刷和陆地河流的输入对渤海地区PBDEs的含量有重要影响。  相似文献   

5.
建立了凝胶渗透色谱(GPC)结合气相色谱-负化学源质谱(GC-NCI/MS)检测鱼肉及鱼油中8种多溴联苯醚(PBDEs)同系物及2种得克隆阻燃剂(DP)的分析方法。试样中加入内标物BDE-77和13C12-BDE-209后进行索氏提取,提取液经自动GPC系统除脂,多层硅胶层析柱净化后,在15 m长的毛细管气相色谱柱上分离,NCI/MS以选择离子监测方式检测目标化合物。以鱼肉样品为基质,当PBDEs的加标水平为0.2 ng/g和2 ng/g、BDE-209和DP的加标水平相应提高10倍时,其平均加标回收率为71.1%~121.4%,相对标准偏差为2.96%~13.31%(n=5);以信噪比(S/N)为3计算方法的检出限(LOD)为2.2~39.8 ng/kg。用该方法检测市售鱼肉及鱼油样品,其中多溴联苯醚总含量为2.18~15.93 ng/g,以BDE-209、BDE-47为主,两种DP均未检出。该方法准确、灵敏度高,能够满足富含脂质的动物性样品中痕量DP和PBDEs残留的分析要求。  相似文献   

6.
Shi Z  Wang Y  Feng J  Huang P  Wu Y 《色谱》2011,29(6):543-548
建立了凝胶渗透色谱(GPC)结合气相色谱-负化学源质谱(GC-NCI/MS)检测鱼肉及鱼油中8种多溴联苯醚(PBDEs)同系物及2种得克隆阻燃剂(DP)的分析方法。试样中加入内标物BDE-77和13C12-BDE-209后进行索氏提取,提取液经自动GPC系统除脂,多层硅胶层析柱净化后,在15 m长的毛细管气相色谱柱上分离,NCI/MS以选择离子监测方式检测目标化合物。以鱼肉样品为基质,当PBDEs的加标水平为0.2 ng/g和2 ng/g、BDE-209和DP的加标水平相应提高10倍时,其平均加标回收率为71.1%~121.4%,相对标准偏差为2.96%~13.31%(n=5);以信噪比(S/N)为3计算方法的检出限(LOD)为2.2~39.8 ng/kg。用该方法检测市售鱼肉及鱼油样品,其中多溴联苯醚总含量为2.18~15.93 ng/g,以BDE-209、BDE-47为主,两种DP均未检出。该方法准确、灵敏度高,能够满足富含脂质的动物性样品中痕量DP和PBDEs残留的分析要求。  相似文献   

7.
建立了一种同时测定沉积物中不同赋存形态的多溴联苯醚(PBDEs)和四溴双酚A(TBBPA)的分析方法.样品由等体积的丙酮和正己烷混合溶剂抽提得到自由态目标物,再通过碱性水解反应释放束缚态目标化合物.通过调节酸度(pH值)实现PBDEs和TBBPA的分离和提取.PBDEs由复合硅胶柱净化,运用气相色谱-质谱(负离子化学源)-分时段选择离子监测技术测定;TBBPA经重氮甲烷衍生化反应后由酸性硅胶柱预纯化,运用气相色谱-质谱(电子轰击源)-分时段选择离子监测技术测定.8种低溴联苯醚(BDE28,-47,-66,-100,-99,-154,-153,-183),十溴联苯醚(BDE209)和TBBPA的检出限分别为0.6~12.5 pg/g,172 pg/g,4 2 pg/g.方法具有良好的准确度和精确度,回收率均在74%~106%之间,RSD≤10%.对东江沉积物样品的分析表明,本方法能够实现不同形态的PBDEs 和TBBPA的有效检测.  相似文献   

8.
建立了食品中8种多溴联苯醚(PBDEs) 残留的气相色谱-串联质谱分析方法,初步解析了PBDEs的电子轰击串联质谱(EI MS/MS)图,为各种目标物的准确定性分析提供依据.以BDE-28、BDE-47、BDE-66、BDE-85、BDE-99、BDE-100、BDE-153、BDE-154为研究对象,对EI MS/MS各分析参数进行了优化.用超声提取-酸性硅胶层析柱净化的前处理方法制备样品,当空白样品的加标水平为10.0、25.0 μg/kg时,8种PBDEs的平均加标回收率为82% ~112%,相对标准偏差为3.1% ~15%,方法检出限均低于1.5 μg/kg;8种PBDEs的线性范围为10.0 ~500 μg/kg,相关系数均大于0.994 7.  相似文献   

9.
Huang F  Zhao Y  Li J  Wu Y 《色谱》2011,29(8):743-749
采用OasisHLB固相萃取柱萃取血清中的多溴联苯醚(PBDEs),经浓硫酸柱上除脂后,利用气相色谱-负化学源质谱法测定BDE-17、28、47、66、99、100、153、154、183和209共10种PBDEs组分。BDE-209的测定采用DB-5 ms色谱柱(15 m×0.25 mm×0.1 μm),其他组分采用VF-5 ms色谱柱(30 m×0.25 mm×0.25 μm)。对样品中蛋白质的去除溶剂和固相萃取条件(如洗脱溶剂及其用量)进行了优化。胎牛血清中的加标回收试验结果显示,各PBDEs单体相对于内标的平均回收率为78.5%~109.7%,日内测定的相对标准偏差(RSD)为0.3%~7.4%,日间测定的RSD为1.4%~14.1%。胎牛血清中三溴~七溴联苯醚的检出限(信噪比为3)为0.10~0.27 ng/L;定量限(信噪比为10)除了BDE-209为7.91 ng/L外,其他PBDEs为0.35~0.91 ng/L。采用本方法测定标准参考物质SRM1957和SRM1958,结果在参考值范围内。实验结果表明,本方法灵敏度高、准确度和精密度好,简便快速,溶剂消耗量少,适用于人体血清中三至十位溴取代联苯醚的测定。  相似文献   

10.
气相色谱-负化学源质谱快速测定母乳中的多溴联苯醚   总被引:1,自引:0,他引:1  
建立了母乳中8种多溴联苯醚(PBDEs:BDE28,BDE47,BDE99,BDE100,BDE153,BDE154,BDE183,BDE209)的气相色谱-负化学源质谱测定方法(GC-NCI/MS)。样品经索氏提取、酸化硅胶除脂、硅胶氧化铝色谱柱净化后,在7 m长的毛细管气相色谱柱上快速分离,NCI/MS以选择离子监测模式测定目标化合物。其中,三溴~七溴联苯醚采用内标法定量,十溴联苯醚(BDE209)采用同位素稀释法定量。8种PBDEs的检出限为1.74~6.35 pg/g(以脂肪计)。加标回收试验的回收率为61.5%~108%,相对标准偏差为2.06%~10.1%(n=6)。并采用母乳参考物质进一步证实了该方法的准确可靠。该方法提高了BDE209的分析灵敏度,而且分析成本相对较低,分析时间短,适于推广。  相似文献   

11.
Eight polybrominated diphenyl ether (PBDE) congeners of primary interest to the US EPA were separated using reverse-phase liquid chromatography on an octadecylsilane column. BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209 were baseline-resolved under isocratic conditions in 92:8 methanol/water (v/v). Negative-ion atmospheric pressure photoionization (NI-APPI) with a toluene dopant produced precursor ions corresponding to [M–Br+O] for the eight congeners studied. Each congener was quantified by tandem mass spectrometry through a unique multiple reaction monitoring (MRM) transition. On-column limits of detection were between 2.4 and 27.8 pg for the eight congeners studied, with an intra-day method precision of 9%. The LC/NI-APPI/MS/MS method was validated for the analysis of the eight PBDE congeners in NIST SRM 2585 (Organics in House Dust). Pressurized liquid extraction (PLE) with subsequent LC/NI-APPI/MS/MS analysis afforded quantitative recovery for all eight PBDE congeners with recoveries ranging from 92.7 to 113%. The liquid-phase separation of the LC/NI-APPI/MS/MS method is not prone to the thermal degradation issues that plague splitless GC based analyses of highly brominated PBDEs such as BDE-209.  相似文献   

12.
A rapid and reliable analytical method based on pressurised solvent extraction (PSE) and GC-NCI-MS was developed for the determination of 41 different PBDEs in soil. All PBDEs, including mono- to hepta-BDEs (sum of 39 congeners), one nona-BDE and deca-BDE, were efficiently extracted from soil samples using the extraction technology of PSE. The extract was then cleaned up on a florisil column. Satisfactory separation of 41 PBDE congeners was obtained on a 15-m DB-5MS capillary column, saving the use of another 30-m column specific for the separation of mono- to hepta-BDEs. PBDEs were identified and quantified by GC-MS in negative chemical ionisation (NCI) mode, and further confirmed in semi electron impact (SEI) mode when the ion source was also NCI. The method detection limits ranged from 0.01 to 0.03?ng?g?1?dw for mono- to hepta-BDEs, 1.43?ng?g?1?dw for the nona-BDE and 0.20?ng?g?1?dw for deca-BDE. The applicability of the method was tested in soil samples collected from an e-waste recycling site at Guiyu. Twenty-one PBDEs (mono- to deca-) were detected, and eighteen congeners were quantified. The concentration range of PBDEs was 0.78–436?ng?g?1?dw. BDE-47, BDE-99, BDE-153, BDE-183, BDE-206 and BDE-209 were the dominant congeners, and BDE-209 accounted for 62% of the total PBDEs. The congener profiles of PBDEs in soil samples were similar to those in three commercial PBDE products (Penta-, Octa- and Deca-BDE), and Deca-BDE product was the most important contributor.  相似文献   

13.
Frank C. Calvosa 《Talanta》2010,80(3):1116-6727
The extraction of polybrominated diphenyl ethers (PBDEs) from SRM 2585 (Organic Contaminants in House Dust) was investigated using supercritical fluid R134a as an extraction solvent. Three methods of dust extraction were studied: (1) extraction of dry dust, (2) extraction of dry dust dispersed on Ottawa sand and (3) extraction of dust wet with dichloromethane. For each of the three sample preparation methods, extracts at three temperatures (110, 150, and 200 °C) above the critical temperature of R134a were performed. Eight PBDE congeners (BDE-28, -47, -99, 100, -153, -154, -183, and -209) in the SFE extracts were analyzed by liquid chromatography negative-ion atmospheric pressure photoionization tandem mass spectrometry (LC/NI-APPI/MS/MS). The optimum extraction of PBDEs from house dust using supercritical R134a is obtained when the dust is pre-wet with dichloromethane prior to extraction to swell the dust. For all sample preparation methods, higher temperatures afforded higher percent recoveries of the eight PBDE congeners. Only a combination of high-temperature (200 °C) and pre-wetting the dust with dichloromethane produced high recovery of the environmentally important, fully brominated PBDE congener, BDE-209.  相似文献   

14.
Gas chromatographic analysis of polybrominated diphenyl ethers (PBDEs) has been evaluated in an attempt to achieve better control of the separation process, especially for highly substituted congeners. Use of a narrow-bore capillary column enabled adequate determination of tetra, penta, hexa, hepta, octa, nona and decaBDE congeners in only one chromatographic run while maintaining resolution power similar to that of conventional columns. A micro electron-capture detector (GC–μECD) was used. Chromatographic conditions were optimized by multifactorial experimental design, with the objective of obtaining not only high sensitivity but also good precision. In this way two different approaches to maximizing response and minimizing variability were tested, and are fully discussed. These optimum chromatographic conditions were then used to determine PBDEs extracted from domestic dust samples by microwave-assisted solvent extraction (MASE). Quantitative recovery (90–108%) was achieved for all the PBDEs and method precision (RSD < 13%) was satisfactory. Accuracy was tested by use of the standard reference material SRM 2585, and sub-ng g−1 limits of detection were obtained for all compounds except BDE-209 (1.44 ng g−1). Finally, several samples of house dust were analysed by use of the proposed method and all the target PBDEs were detected in all the samples. BDE-209 was the predominant congener. Amounts varied from 58 to 1615 ng g−1 and the average contribution to the total PBDE burden of 52%. The main congeners of the octaBDE mixture (BDE-183, BDE-197, BDE-207 and BDE-196) also made an important contribution (29%) to the total. These are the first data about the presence of these compounds in European house-dust samples. Finally, the sum of the main congeners in the pentaBDE commercial mixture (BDE-47, BDE-99, and BDE-100) contributed 14% to the total. Figure Polybrominated diphenyl ethers in House Dust  相似文献   

15.
Analysis of 11 polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A bis 2,3-dibromopropylether (TBBPA-bis), tetrachlorobisphenol A (TCBPA), tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) was optimized by ultrahigh pressure liquid chromatography/tandem mass spectrometry (UPLC–MS/MS) operating in negative ion (NI) mode. Electrospray ionization (ESI), atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) sources were tested and for PBDEs APCI gave higher sensitivity than APPI while for TBBPA-bis APCI and APPI showed similar performance. ESI was the best option for TCBPA, TBBPA and HBCDs. Detection limits were between 20 and 59 fg for the compounds analyzed by ESI, 0.10 and 0.72 pg for PBDEs and 6 pg for TBBPA-bis. The matrix effect of sewage sludge extract was also tested showing negligible ion suppression for APCI and an increase of the background level of all investigated pollutants leading to a worsening of the limits of quantification by a factor between 1.2 and 3.3. The UPLC-APCI/MS/MS method for PBDEs, after pressurized liquid extraction (PLE), was validated by comparison with the concentration values from the NIST 1944 standard reference material. The advantages of the methods include low detection limits, PBDE congeners specificity using selected multiple reaction monitoring (MRM) transitions, and the absence of thermal degradation of higher PBDE congeners, especially BDE-209. The methods were applied for the determination of the above reported flame retardants in sewage sludge in order to get more information about the degradation on PBDEs (in particular BDE-209) during municipal wastewater treatments.  相似文献   

16.
Stir bar sorptive extraction and liquid desorption (LD) followed by large volume injection and capillary gas chromatography coupled to mass spectrometry (SBSE-LD-LVI-GC-MS), had been applied for the determination of ultra-traces of eleven polybrominated diphenylethers (PBDEs), from tetra to nona congeners (BDE-47, BDE-100, BDE-99, BDE-85, BDE-154, BDE-153, BDE-183, BDE-197, BDE-196, BDE-207 and BDE-206), in environmental matrices. Instrumental calibration under the selected-ion monitoring (SIM) mode acquisition and parameters that could affect the SBSE-LD efficiency are fully discussed. A complete randomized factorial design was established for the first time to optimize the main experimental parameters that affecting the SBSE-LD efficiency, including decisive interactions, which provides a more realistic picture of the sampling process. The analysis of variance (ANOVA) was the statistical method used to analyze data. From the data obtained, it can be emphasized that experimental parameters such as extraction time (240 min), agitation speed (1250 rpm), methanol content (40%) and desorption conditions (acetonitrile, 15 min), were the best analytical compromise for the simultaneous determination between tetra and nona congeners in aqueous media. A remarkable recovery (65.6-116.9%) and repeatability (<12.1%) were attained, whilst the experimental data allowed very good agreement with predict theoretical equilibrium described by the octanol-water partition coefficients (K(PDMS/W) approximately = K(O/W)), with the exception of nona congeners since slightly lower yields were measured. Furthermore, excellent linear dynamic ranges from 0.01 to 14.0 microg/L (r2>0.9917) and low detection limits (0.3-203.4 ng/L) were also achieved for the eleven congeners studied. The proposed methodology was applied for the determination of ultra-trace levels of PBDEs in waste water, sediments and printed board circuit matrices by the standard addition approach, showing to be reliable, sensitive and having a low sample amount requirement in compliance with the international regulatory bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号