首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembly of Nafion onto in situ formed silica nanoparticles in ethylene glycol–water mixture solvent has been investigated in this study. It was found that the formation of silica nanoparticles depends on the concentration of Nafion in dispersions. At relatively low concentration, 0.8% in weight in this case, the existing Nafion is not sufficient to prevent further growth of the initially formed silica nanoparticles, leading to large aggregates of silica particles. When the concentration of Nafion increased to 2% in weight, self-assembled Nafion layer on the surface stabilizes the initial formed silica nanoparticles and silica particles with average diameters of 4.2±0.5 nm were found to be uniformly distributed in the dispersion. With further increasing the concentration of Nafion, the number of Nafion aggregates increases and silica nanoparticles were mainly formed inside the entangled Nafion chains, resulting in an observation of clusters of silica nanoparticles.  相似文献   

2.
The influence of surface nature (hydrophobic and hydrophilic) and concentration of silica nanoparticles on the coalescence behavior of immiscible polydimethylsiloxane (PDMS)/polyisobutylene (PIB) (90/10) blends under simple low-rate shear flow were investigated via optical shear technique. It was found that the coalescence of PIB droplets in PDMS matrix was suppressed efficiently by incorporating hydrophobic silica nanoparticles, and a constant droplet size was obtained at high particle contents. The addition of a small amount (<0.4 wt.%) of hydrophilic silica nanoparticles also decreased the size of PIB droplets. Clusters of small PIB droplets were formed at low filler concentration. When the filler concentration exceeded 0.8 wt.%, the clusters of PIB drops disappeared and elongated PIB threads with large size were formed, which suggest that the coalescence of PIB droplets was promoted. The results indicate that the discrepancy in the morphology evolution of PDMS/PIB blends upon the addition of silica nanoparticles is controlled not only by the surface chemistry of nanoparticles but also by their concentration in the blends.  相似文献   

3.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

4.
Deposition of silica thin films on silicon wafer was investigated by in situ mass measurements with a microbalance configured for dip coating. Mass change was recorded with respect to deposition time when the substrate was fully immersed in the silica sol. Mass gain during deposition was higher than predicted from monolayer coverage of silica nano particles. This implied that deposition was facilitated by gelling of the nanoparticles on the substrate. The rate of deposition was enhanced by increasing the particle concentration in the sol and by decreasing the particle size from 12 to 5 nm. Increasing the salt concentration of the silica sol at constant pH enhanced the deposition of the silica particles. Reducing the pH of the sol from 10 to 6 decreased the deposition rate due to aggregation of the primary silica particles.  相似文献   

5.
For the first time, large amount of Janus silica particles as small as 100 nm in diameter were prepared through a simple method based on the elaboration of Pickering emulsions of wax-in-water. Controlling the kinetic stabilization of wax droplets allows the fabrication of gram-sized quantities of regular asymmetric inorganic particles with high yield. In fact, our method is based on a limited coalescence process, which allows one to predict the quantity of interface which is produced when working with a known mass of wax, and thus to be sure that all introduced silica particles are adsorbed on the wax surface. To this end, the hydrophilic surface of the silica particles was made partially hydrophobic by adsorbing a known amount of surfactant: cetyltrimethylammonium bromide (CTAB). Varying the concentration in surfactant results in tuning the penetration rate of the particles in the wax droplets, leading to various dimension of the modified area. The broken spherical symmetry of the particle surface was thereafter revealed by the selective adsorption of gold nanoparticles on the amino-modified surface.  相似文献   

6.
Silica nanoparticles with controlled size and morphology and a high degree of monodispersity have been synthesized using single and double microemulsion systems employing a cationic surfactant (CTAB) and a non-ionic surfactant (Tergitol). Depending on the type of surfactant aggregate acting as templates, very different morphologies were formed. Nanospindles of silica of ~200–300 nm in length and nanofibres could be obtained by suitably controlling the reverse micellar methodology. The hydrothermal method resulted in highly porous and uniform spheres of diameter ~300 nm which appears to be formed from aggregates of small silica nanoparticles of size ~10 nm. The surface area of the nanoparticles (119 m2/g) was found to be much higher than the corresponding bulk SiO2 (500–600 nm) which had a surface area of 22 m2/g. The hydrothermally obtained spheres of size ~300 nm show a surface area of 35 m2/g. In honor of Prof. C.N.R. Rao, FRS, on his 75th birth anniversary.  相似文献   

7.
The dispersion stability of hydrophilic boehmite nanoparticles in aqueous sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solutions was studied in a wide range of particle and surfactant concentrations. The two experimental parameters significantly influence the dispersion stability and span a stability diagram. With increasing surfactant concentration and decreasing particle concentration, the system changes from stable via moderately stable to unstable and back. In concentrated AOT solutions, fully redispersed particles are present, stabilized by a surfactant bilayer or admicelles on the surface. The redispersion can be reversibly induced by dilution or concentration of the samples. The positions of two transitions, namely for complete precipitation and for beginning redispersion, can be fitted accurately using a simple model based on H-type adsorption and including the specific surface area of the particle and the molar area of the surfactant. The transitions are controlled by the concentration of free surfactant molecules in solution as well as the saturation surface coverage and were corroborated by turbidity measurements.  相似文献   

8.
The slow aggregation process of a concentrated silica dispersion (Bindzil 40/220) in the presence of alkali chlorides (LiCl, NaCl, KCl, RbCl, and CsCl) was investigated by means of mobility measurements. At intervals during the aggregation, particles and aggregates were transferred from the liquid phase to the gas phase via electrospray (ES) and subsequently size selected and counted using a scanning mobility particle sizer (SMPS). This method enables the acquisition of particle and aggregate size distributions with a time resolution of minutes. To our knowledge, this is the first time that the method has been applied to study the process of colloidal aggregation. The obtained results indicate that, independent of the type of counterion, a sufficient dilution of the formed gel will cause the particles to redisperse. Hence, the silica particles are, at least initially, reversibly aggregated. The reversibility of the aggregation indicates additional non-DLVO repulsive steric interactions that are likely due to the presence of a gel layer at the surface. The size of the disintegrating aggregates was monitored as a function of the time after dilution. It was found that the most stable aggregates were formed by the ions that adsorb most strongly on the particle surface. This attractive effect was ascribed to an ion-ion correlation interaction.  相似文献   

9.
The level of colloidal stability of a latex coating formulation is governed by the hydrodynamic size of the pigment particle and its aggregates, along with the electrolyte concentration of the coating formulation. Model latex coating films were developed to investigate the effects of pigment aggregate size and the electrolyte concentration in the latex coating formulation on the critical pigment volume concentration (CPVC), as determined by mechanical optical and permeability properties.

The poly(styrene) pigment and poly(styrene-butadiene) (60:40) binder particles were characterized for their relative sizes, the surfactant surface coverage and the critical coagulation concentration, in dilute (1.8% solids) and concentrated (42% solids) dispersions, for sodium chloride and calcium chloride. The hydrodynamic diameter of the strong pigment aggregates formed as a function of aging time, after adjusting the electrolyte concentration of the pigment dispersion to the c.c.c. level were characterized by capillary chromatography technique.

The Increasing size of the pigment aggregates and the increasing electrolyte concentration of the latex coating formulation were shown to sharply decrease the CPVC values determined by mechanical and optical properties such as tensile strength and contrast ratio of the coating. Their influence on the permeability property of the films such as porosity was limited by the availability of the binder to form smooth surface below 35-40% PVC.

The morphological studies of the coating films showed that aggregates cause an increase in the degree of non-uniform distribution of the binder and pigment in the latex coating film  相似文献   

10.
Isothermal titration calorimetry was used to monitor the adsorption of the surfactant sodium dodecylsulfate (SDS) on different sized pure and carboxy functionalized polystyrene nanoparticles prepared by the mini-emulsion process. The ITC experiment gives, additionally to the CMC values, information about the interaction of the surfactant molecules to the particle’s surface due to the particle surface properties. The adsorption heat depends on the chemical composition of the polymer as well on the particle size. It also provides information about the surface coverage with surfactant and the number of additional adsorbed molecules per particle until full coverage by surfactant is obtained. The surfactant adsorption increases from 0.3 molecules per nm2 for 50 nm to 8.5 molecules per nm2 for carboxy functionalized particles with diameters larger than 160 nm. The area A Surf-dens after the adsorption process gives information about the packing density of surfactant molecules on the particles in dependence of carboxy groups: an increasing number of carboxylic groups decreases the area occupied per SDS molecule. The adsorption process was also monitored by zeta potential measurements, where an increasing potential during the adsorption was detected.  相似文献   

11.
Aquasols containing silica nanoparticles with diameters of 75 to 95 nm were obtained directly by hydrolysis of 2 wt.% tetraethoxysilane (TEOS) in water in the presence of a non-ionic surfactant. The reaction was catalyzed by hydrochloric acid, ammonia, or sodium hydroxide. The particle size, which mainly depends on the concentration of TEOS in water, was determined by dynamic light scattering (DLS). Whereas the catalysts have almost no influence on the particle size, they very strongly affect the morphology of the silica particles formed. The dried SiO(2) particles obtained via the HCl-catalyzed reaction have film-forming properties and show no measurable BET surface area. SiO(2) particles prepared with ammonia as catalyst form nanoporous films on glass, and the BET surface area of the freeze-dried particles is 540 m(2)/g. Using sodium hydroxide as catalyst results in some agglomeration of uniform spherical particles with a BET surface area of 237 m(2)/g. (29)Si MAS NMR investigations of the freeze-dried particles provide information about the degree of condensation and the ratio of "free" hydroxyl groups. The silica aquasols described have a surprisingly high hydrophilizing effect on hydrophobic fibers (PP, PET). Silica nanoparticles of comparable diameters, prepared by the "St?ber method", dispersed in alcohol do not show any hydrophilizing properties worth to mention.  相似文献   

12.
Using a range of complementary experiments, a detailed investigation into the behavior of dodecane-water emulsions stabilized by a mixture of silica nanoparticles and pure cationic surfactant has been made. Both emulsifiers prefer to stabilize o/w emulsions. At high pH, particles are ineffective emulsifiers, whereas surfactant-stabilized emulsions become increasingly stable to coalescence with concentration. In mixtures, no emulsion phase inversion occurs although synergism between the emulsifiers leads to enhanced stability at either fixed surfactant concentration or fixed particle concentration. Emulsions are most stable under conditions where particles have negligible charge and are most flocculated. Freeze fracture scanning electron microscopy confirms the presence of particle flocs at drop interfaces. At low pH, particles and surfactant are good emulsifiers alone. Synergism is also displayed in these mixtures, with the extent of creaming being minimum when particles are most flocculated. Experiments have been undertaken in order to offer an explanation for the latter synergy. By determining the adsorption isotherm of surfactant on particles in water, we show that surfactant addition initially leads to particle flocculation followed by re-dispersion. Using suitable contact angle measurements at oil-water-solid interfaces, we show that silica surfaces initially become increasingly hydrophobic upon surfactant addition, as well as surfactant adsorption lowering the oil-water interfacial tension. A competition exists between the influence of surfactant on the contact angle and the tension in the attachment energy of a particle to the interface.  相似文献   

13.
SiO2 nano particles, with particle size of 12 nm, were first modified by substituting surface OH groups with O-hexyl moiety. Then, poly1-hexene/modified-SiO2 composites with various nano-SiO2 weight fractions were prepared by three different methods: in situ, solution, and melt methods and designated as PH-SiO2/Insitu, PH-SiO2/Sol and PH-SiO2/Melt, respectively. PH-SiO2/Insitu samples showed highly uniform particle dispersion up to 30 wt. % of silica while in PH-SiO2/Sol and PH-SiO2/Melt samples agglomeration of the silica nanoparticles occurred for filler contents ≥5 wt. % (i.e. 5, 10, 20 and 30 wt%). In the synthesized composites, the storage modulus significantly increased as high as 20.7 times when compared with neat poly1-hexene. Maximum decomposition temperature (Tmax) and char yield at 600 °C increased with increasing silica level. Rheological results showed that Gʹ> Gʺ over the frequency range, illustrating the elastic behavior of the composite samples. In fact, samples showed the characteristic of a non-Newtonian fluid with a strong shear thinning effect in which η* increased with increasing filler weight fraction. From the results, it can be expected that modified silica could replace silica nanoparticles in polyolefin nanocomposite reinforcement.  相似文献   

14.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

15.
Numerical simulation has been performed for the process of nucleation and growth of nanoparticles in the presence of surfactants. Surfactant molecules are adsorbed on the surface of nanoparticles and decelerate their growth in supersaturated solutions. It has been assumed that nanoparticles are completely blocked after a certain degree of surface coverage is achieved, and they cease to grow. It has been demonstrated that, at low concentrations, surfactants influence the average size and the width of the size distribution of nanoparticles; i.e., the average particle size decreases and the distribution becomes narrower with the growth of surfactant concentration. At high concentrations, the effect of surfactants is more dramatic; namely, the particle size distribution becomes bimodal. At high surfactant concentrations, the periodic supply of a precursor, which serves as a source of monomers (metal atoms), may result in the formation of polymodal ensembles of the nanoparticles.  相似文献   

16.
A series of highly water-soluble organo-silica nanoparticles, ranging from 2 to 10 nm in diameter, were synthesized by the cohydrolysis and copolycondensation reactions. ω-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG6-9) and hydroxymethyltriethoxysilane (HMTEOS) mixtures were catalyzed by sodium hydroxide in the presence of surfactant benzethonium chloride (BTC) with various ratios of PEG6-9/HMTEOS at room temperature. The synthesized organo-silica nanoparticles possess a core–shell structure with a core of organo-silica resulting from HMTEOS and a monolayer shell of PEG6-9. The chemo-physical characteristics of the particles were studied by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, 29Si nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The molecular weight and particle size of the particles increased with increasing HMTEOS molar ratios. The richest HMTEOS composition for the water-soluble particles was found to be HMTEOS:PEG6-9 = 80:20, where the particles had a 6 nm diameter core and a 0.8 nm thick shell. We propose that these water-soluble organo-silica nanoparticles will be suitable for biomedical applications.  相似文献   

17.
Silica/perfluoroalkyl methacrylate polymer (PHDFDMA) particles were prepared using various types of silica by polymerization in supercritical carbon dioxide. There are three steps in the fabrication of inorganic/organic hybrid composites: silane treatment, polymerization, and soxhlet extraction. After these steps, we observed the morphology of silica/PHDFDMA particles using field emission scanning electron microscope and transmission electron microscope. From these analyses, we can confirm that the silica/PHDFDMA core/shell particles were obtained when we used Ludox and silica gel as a silica template. On the other hand, core/shell particles were not formed when using fused silica and precipitated silica. In addition, to confirm the amount of polymer on silica, we performed an analysis using thermogravimetric analysis and electron probe micro-analyzer. In this case, PHDFDMA was approximately 20 wt.% on the silica gel and 40 wt.% on the Ludox, respectively. When using fused silica and precipitated silica as a template, amount of PHDFDMA on silica was maximum 5 wt.% and over 40 wt.%, respectively. From these results, to obtain enough PHDFDMA encapsulated silica particle, colloidal silica, Ludox is the best template in four different types of silica.  相似文献   

18.
研究了3种不同结构的水溶性阳离子表面活性剂对纳米二氧化硅颗粒的原位表面活性化作用, 它们分别是单头单尾的十六烷基三甲基溴化铵(CTAB)、单头双尾的双十二烷基二甲基溴化铵(di-C12DMAB)和双头双尾的Gemini型阳离子三亚甲基-二(十四酰氧乙基溴化铵)(II-14-3), 并通过测定Zeta电位、吸附等温线及接触角等参数对相关机理进行了阐述. 结果表明, 阳离子表面活性剂吸附到颗粒/水界面形成以疏水基朝向水的单分子层, 从而增强了颗粒表面的疏水性是原位表面活性化的基础. 通过吸附CTAB和II-14-3, 颗粒的疏水性适当增强, 能吸附到正辛烷/水界面稳定O/W(1)型乳状液; 而通过吸附di-C12DMAB所形成的单分子层更加致密, 颗粒的疏水性进一步增强, 进而使乳状液从O/W(1)型转变为W/O型; 当表面活性剂浓度较高时, 由于链-链相互作用, 表面活性剂分子将在颗粒/水界面形成双层吸附, 使颗粒表面变得亲水而失去活性, 但此时体系中游离表面活性剂的浓度已增加到足以单独稳定O/W(2)型乳状液的程度. 因此当采用纳米二氧化硅和di-C12DMAB的混合物作乳化剂时, 通过增加di-C12DMAB的浓度即可诱导乳状液发生O/W(1)→W/O→O/W(2)双重相转变.  相似文献   

19.
Effects of surfactant/water volume ratios and dye amounts on the properties of micelles and fluorescence silica nanoparticles were studied in microemulsions containing nonionic surfactant Triton X-100, hexanol as co-surfactant, cyclohexane as organic solvent, and metal organic dye (tris(2,2′-bipyridyl)dichlororuthenium) via fluorescence probe technique, TEM, and XPS. Fluorescence probe measurements show that the micelle microenvironment becomes stable at the surfactant/water volume ratio higher than 3.5 and the incubation time longer than 10 h. The data suggest that the silica shell, which is formed at the surfactant/water ratio of 3.5, yields an efficient protection of dye molecules against the e-beam irradiation and result in high photostability of fluorescent silica. We pioneered the localization of dye molecules on the surface of dye-doped silica and found that an increase of dye amounts, beyond a threshold, in the microemulsion cannot enhance the fluorescence intensity of dye-doped nanoparticles. These results are of significant importance for optimizing the synthesis of fluorescent nanoparticles with high photostability and low cost.  相似文献   

20.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号