首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mathematical optimization of a continuous alcoholic fermentation process combined with a flash column under vacuum was studied. The objective was to maximize % yield and productivity in the fermentor. The results using surface response analysis combined with modeling and simulation were compared withy those obtained when the problem was written as a nonlinear programming problem and was solved with a successive quadratic programming (SQP) technique. Two process models were evaluated when the process was optimized using the SQP technique. The first one is a deterministic model, whose kinetic parameters were experimentally determined as functions of the temperature, and the second is a statistical model obtained using the factorial design technique combined with simulation. Although the best result was the one obtained using the rigorous model, the values for productivity and % yield obtained using the simplified model are acceptable, and these models can be used when the development of a rigorous model is excessively difficult, slow, or expensive.  相似文献   

2.
In this work, mathematical modeling was employed to assess the dynamic behavior of the flash fermentation process for the production of butanol. This process consists of three interconnected units as follows: fermentor, cell retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). Based on the study of the dynamics of the process, suitable feedback control strategies [single input/single output (SISO) and multiple input/multiple output (MIMO)] were elaborated to deal with disturbances related to the process. The regulatory control consisted of keeping sugar and/or butanol concentrations in the fermentor constant in the face of disturbances in the feed substrate concentration. Another objective was the maintenance of the proper operation of the flash tank (maintenance of the thermodynamic equilibrium of the liquid and vapor phases) considering that oscillations in the temperature in the tank are expected. The servo control consisted of changes in concentration set points. The performance of an advanced controller, the dynamic matrix control, and the classical proportional-integral controller was evaluated. Both controllers were able to regulate the operating conditions in order to accommodate the perturbations with the lowest possible alterations in the process outputs. However, the performance of the PI controller was superior because it showed quicker responses without oscillations.  相似文献   

3.
We explored the influence of dilution rate and pH in continuous cultures of Clostridium acetobutylicum. A 200-mL fibrous bed bioreactor was used to produce high cell density and butyrate concentrations at pH 5.4 and 35°C. By feeding glucose and butyrate as a cosubstrate, the fermentation was maintained in the solventogenesis phase, and the optimal butanol productivity of 4.6g/(L h) and a yield of 0.42 g/g were obtained at a dilution rate of 0.9h−1 and pH 4.3. Compared to the conventional acetone-butanol-ethanol fermentation, the new fermentation process greatly improved butanol yield, making butanol production from corn an attractive alternative to ethanol fermentation.  相似文献   

4.
Butanol, a promising biofuel, can be produced by ABE (acetone, butanol and ethanol) fermentation using e.g. Clostridium acetobutylicum. However, the butanol concentration in the resulting broth is limited to only ca. 20 g/L due to the toxicity for the microorganisms. This low product concentration demands an efficient recovery process for successful commercialization of this process. In this study, a structured adsorbent in the form of steel monolith coated with a silicalite-1 film was prepared using the in situ growth method. The adsorbent was carefully characterized by SEM and XRD. The performance of the adsorbent was evaluated by performing breakthrough experiments at room temperature using model ABE fermentation broths and the performance was compared with that of traditional adsorbents in the form of beads. The structured silicalite-1 adsorbent showed less saturation loading time as compared to commercial binder free silicalite-1 beads, reflecting the different dimensions of the columns used, set by experimental constraints. Studies of the desorption process showed that by operating at appropriate conditions, butanol with high concentration i.e. up to 95.2 wt% for butanol–water model system and 88.5 wt% for ABE fermentation broth can be obtained using the structured silicalite-1 adsorbent. Commercial silicalite-1 beads also showed good selectivity but the concentration of butanol in the desorbed product was limited to 70 % for the butanol–water model system and 69 % for ABE fermentation broth, probably as a result of entrained liquid between the beads.  相似文献   

5.
Predicting protein structures from their amino acid sequences is a problem of global optimization. Global optima (native structures) are often sought using stochastic sampling methods such as Monte Carlo or molecular dynamics, but these methods are slow. In contrast, there are fast deterministic methods that find near-optimal solutions of well-known global optimization problems such as the traveling salesman problem (TSP). But fast TSP strategies have yet to be applied to protein folding, because of fundamental differences in the two types of problems. Here, we show how protein folding can be framed in terms of the TSP, to which we apply a variation of the Durbin-Willshaw elastic net optimization strategy. We illustrate using a simple model of proteins with database-derived statistical potentials and predicted secondary structure restraints. This optimization strategy can be applied to many different models and potential functions, and can readily incorporate experimental restraint information. It is also fast; with the simple model used here, the method finds structures that are within 5-6 A all-Calpha-atom RMSD of the known native structures for 40-mers in about 8 s on a PC; 100-mers take about 20 s. The computer time tau scales as tau approximately n, where n is the number of amino acids. This method may prove to be useful for structure refinement and prediction.  相似文献   

6.
1-Butanol and butyric acid are two interesting compounds that may be produced by acetone, butanol, and ethanol fermentation using e.g. Clostridium acetobutylicum. The main drawback, restricting the commercialization potential of this process, is the toxicity of butanol for the cell culture resulting in low concentrations of this compound in the broth. To make this process economically viable, an efficient recovery process has to be developed. In this work, a hydrophobic MFI type zeolite with high silica to alumina ratio was evaluated as adsorbent for the recovery of butanol and butyric acid from model solutions. Dual component adsorption experiments revealed that both butanol and butyric acid showed a high affinity for the hydrophobic MFI zeolite when adsorbed from aqueous model solutions. Multicomponent adsorption experiments using model solutions, mimicking real fermentation broths, revealed that the adsorbent was very selective to the target compounds. Further, the adsorption of butyric and acetic acid was found to be pH dependent with high adsorption below, and low adsorption above, the respective pKa values of the acids. Thermal desorption of butanol from MFI type zeolite was also studied and a suitable desorption temperature was identified.  相似文献   

7.
研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的波长筛选算法:联合区间最小二乘支持向量机(Synergy interval least squares support vector machines,siLS-SVM),并将新算法与相关系数法、iPLS算法、siPLS算法对比。实验结果显示,联合siLS-SVM算法和LS-SVM模型取得了最好的预测效果,水分含量、pH值的预测集相关系数(Rp)分别为0.962 1、0.976 1,预测均方根误差(RMSEP)分别为0.012 9、0.145 2,表明模型具有较好的拟合度和预测性能。应用近红外光谱法进行红曲菌固态发酵过程的水分含量和pH值的快速检测可行,该方法为进一步实现其过程参数的在线检测及发酵条件优化提供了技术基础。  相似文献   

8.
Polyhydroxybutyrate or PHB is a biodegradable and biocompatible thermoplastic with many interesting applications in medicine, food packaging, and tissue engineering materials. The present study deals with the enhanced production of PHB by Azohydromonas australica using sucrose and the estimation of fundamental kinetic parameters of PHB fermentation process. The preliminary culture growth inhibition studies were followed by statistical optimization of medium recipe using response surface methodology to increase the PHB production. Later on batch cultivation in a 7-L bioreactor was attempted using optimum concentration of medium components (process variables) obtained from statistical design to identify the batch growth and product kinetics parameters of PHB fermentation. A. australica exhibited a maximum biomass and PHB concentration of 8.71 and 6.24?g/L, respectively in bioreactor with an overall PHB production rate of 0.75?g/h. Bioreactor cultivation studies demonstrated that the specific biomass and PHB yield on sucrose was 0.37 and 0.29?g/g, respectively. The kinetic parameters obtained in the present investigation would be used in the development of a batch kinetic mathematical model for PHB production which will serve as launching pad for further process optimization studies, e.g., design of several bioreactor cultivation strategies to further enhance the biopolymer production.  相似文献   

9.
Control of a fed-batch industrial-scale fermenter requires a large amount of “finger-tip feeling” on the part of operators, despite reasonably sophisticated instrumentation. The reason for this is that there are no applicable deterministic models giving aid to the control system in deciding the best operation strategies. This is a typical case of a heuristic experimental process, treating inexact knowledge that is excluded from deterministic and statistic modelling a priori. Essential parts of this problem can be solved by means of an expert system shell, capable of dealing with uncertain information, using the linguistic shell application. Knowledge was extracted from process records on fermentation batches producing baker's yeast on an industrial scale. A strategy for heuristically optimized yield and growth rate can be predicted using knowledge gained in previous runs and stored in the knowledge base of the expert system. The expert system, once built up, can also be used for experimental simulation of the effects of fundamental decision parameters: temperature, production rate, ethanol concentration and specific growth rate. The use of expert system consultations can be generally recommended as an efficient aid in fermentation control.  相似文献   

10.
Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon–nitrogen ratio.  相似文献   

11.
生物反应与产物分离组合技术的研究进展   总被引:2,自引:0,他引:2  
李寅  陈坚  郁明 《化学进展》1997,9(3):283-290
生物反应与产物分离过程相组合, 是近10 年来出现的一类用以提高生物反应过程性能和效率的新技术。本文综述了近年来将这一技术应用于乙醇、丙酮、丁醇、有机酸、氨基酸等传统发酵产品及其它高附加值产品生产的研究进展, 以期为国内大力开展这方面的技术研究提供参考。  相似文献   

12.
In this study, we investigated the dynamics of a computer simulation of a continuous alcoholic fermentation process combined with a flash column under vacuum. The alcohol was partially extracted in order to maintain its concentration at about 40 kg/m3 in the fermentor. The mathematical model of the fermentation was developed for industrial conditions and considers the effect of the temperature on the kinetic parameters. The performance of the dynamic matrix control algorithm, single input single output and multiple input multiple output, for the control of the extractive process was studied. The concepts of factorial design were used in a simulation study to determine the best control structures for the process.  相似文献   

13.
Multipulse feed strategy for glycerol fed-batch fermentation   总被引:4,自引:0,他引:4  
During glycerol fed-batch fermentation, the process could be divided into multiple equal subintervals, and the feed operation was performed in pulse form at the start of each subinterval. Based on the macrokinetic models, the multipulse feed strategy for both glucose and corn steep slurry was determined by a general nonlinear optimization approach to maximize the final glycerol productivity and still control the residual glucose at a low concentration. The experimental results in a 600-mL Airlift Loop Reactor showed that the tested data with this strategy agreed well with the corresponding model prediction, and that the feed mode with nonlinear optimization could improve the glycerol productivity significantly compared with those determined just by limited experimental optimization in previous studies.  相似文献   

14.
An attempt was made to develop a computational model based on artificial neural network and ant colony optimization to estimate the composition of medium components for maximizing the productivity of Penicillin G Acylase (PGA) enzyme from Escherichia coli DH5α strain harboring the plasmid pPROPAC. As a first step, an artificial neural network (ANN) model was developed to predict the PGA activity by considering the concentrations of seven important components of the medium. Design of experiments employing central composite design technique was used to obtain the training samples. In the second step, ant colony optimization technique for continuous domain was employed to maximize the PGA activity by finding the optimal inputs for the developed ANN model. Further, the effect of a combination of ant colony optimization for continuous domain with a preferential local search strategy was studied to analyze the performance. For a comparative study, the training samples were fed into the response surface methodology optimization software to maximize the PGA production. The obtained PGA activity (56.94 U/mL) by the proposed approach was found to be higher than that of the obtained value (45.60 U/mL) with the response surface methodology. The optimum solution obtained computationally was experimentally verified. The observed PGA activity (55.60 U/mL) exhibited a close agreement with the model predictions.  相似文献   

15.
We present a global strategy for molecular simulation forcefield optimization, using recent advances in Efficient Global Optimization algorithms. During the course of the optimization process, probabilistic kriging metamodels are used, that predict molecular simulation results for a given set of forcefield parameter values. This enables a thorough investigation of parameter space, and a global search for the minimum of a score function by properly integrating relevant uncertainty sources. Additional information about the forcefield parameters are obtained that are inaccessible with standard optimization strategies. In particular, uncertainty on the optimal forcefield parameters can be estimated, and transferred to simulation predictions. This global optimization strategy is benchmarked on the TIP4P water model. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The aims of this study were to develop the kinetic model and determine kinetic parameters describing ethanol production from sweet sorghum juice using very high gravity technology in the batch fermentation of Saccharomyces cerevisiae NP01. The obtained experimental data were tested with four different types of model, based on the experimental data, accounting for the substrate limitation, substrate inhibition, product inhibition, and the combination of those three effects, respectively. The optimization technique to find kinetic parameters was non-linear regression using Marquardt method performed through numerical procedure. The chosen model with its kinetic parameters obtained in the batch mode was validated and tested against the other independent experimental data in the small batch-scale and large-scale fermenter, in order to investigate the applicability and scale-up effect of the model, respectively. Then, the obtained model with its parameters was applied in the simulations of the continuous and fed-batch operations to examine the concentration profiles of fermentation components with the variations in operating parameters such as the dilution rate, feed-flow rate, start-up time, and feed concentration. The results indicated that the kinetic model (the substrate limitation with substrate and product inhibition effects) was suitable to describe ethanol fermentation. In the continuous mode, using the dilution rate of 0.01 h?1, the maximum ethanol concentration obtained was, approximately, 90 g/l whereas the simulated results from the fed-batch operation revealed that the maximum ethanol concentration at quasi-steady state condition was, approximately, 96 g/l. The start-up time of 21 h was the fastest time to reach the steady-state and quasi-steady state for both the continuous and fed-batch modes, respectively.  相似文献   

17.
In this work, acetone–butanol–ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.  相似文献   

18.
Corn steep liquor (CSL), a byproduct of the corn wet-milling process, was used in an immobilized cell continuous biofilm reactor to replace the expensive P2 medium ingredients. The use of CSL resulted in the production of 6.29 g/L of total acetone-butanol-ethanol (ABE) as compared with 6.86 g/L in a control experiment. These studies were performed at a dilution rate of 0.32 h−1. The productivities in the control and CSL experiment were 2.19 and 2.01 g/(L·h), respectively. Although the use of CSL resulted in a 10% decrease in productivity, it is viewed that its application would be economical compared to P2 medium. Hence, CSL may be used to replace the P2 medium. It was also demonstrated that inclusion of butyrate into the feed was beneficial to the butanol fermentation. A control experiment produced 4.77 g/L of total ABE, and the experiment with supplemented sodium butyrate produced 5.70 g/L of total ABE. The butanol concentration increased from 3.14 to 4.04 g/L. Inclusion of acetate in the feed medium of the immobilized cell biofilm reactor was not found to be beneficial for the ABE fermentation, as reported for the batch ABE fermentation. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the names by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

19.
The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3?±?0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8?±?0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3?±?0.9, 0.19, and 0.28 g/L/h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.  相似文献   

20.
An optimal control problem for cooling strategies in polymer crystallization processes described by a deterministic model is solved in the framework of a free boundary problem. The strategy of cooling both sides of a one dimensional sample is introduced for the first time in this model, and is shown to be well approximated by the sum of the solutions of two one-phase Stefan problems, even for arbitrary applied temperature profiles. This result is then used to show that cooling both sides is always more effective in polymer production than injecting the same amount of cold through only one side. The optimal cooling strategy, focused in avoiding low temperatures and in shortening cooling times, is derived, and consists in applying the same constant temperature at both sides. Explicit expressions of the optimal controls in terms of the parameters of the material are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号