首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a 7-parameter shell model, a numerical algorithm is developed for solving the contact problem for a multilayered composite shell lying on a rigid convex foundation, which is subjected to a follower pressure and undergoes arbitrarily large rotations. A new geometrically exact solid shell element is formulated, which permits one to solve the nonlinear deformation problem for thin-walled composite structures under unilateral contact constraints by using a small number of load steps. The calculation of a homogeneous ring and an angle-ply toroidal shell interacting with plane and cylindrical foundations is considered.  相似文献   

2.
Based on mixed finite-element approximations, a numerical algorithm is developed for solving a geometrically nonlinear contact problem for a prestressed multilayered Timoshenko-type shell undergoing arbitrarily large displacements and rotations. As unknowns, six displacements of faces of the shell are taken, which allows one to use principally new relationships for components of the Green–Lagrange strain tensor in curvilinear orthogonal coordinates, exactly representing arbitrarily large displacements of the shell as a rigid body. As an example, a tire interacting with a rigid foundation is considered.  相似文献   

3.
Based on mixed finite-element approximations, a numerical algorithm is developed for solving linear static problems of prestressed multilayer composite shells subjected to large displacements and arbitrarily large rotations. As the sought-for functions, six displacements and eleven strains of the shell faces are chosen, which allows us to use nonlinear deformation relationships exactly representing arbitrarily large displacements of the shell as a rigid body. The stiffness matrix of a shell element has a proper rank and is calculated based on exact analytical integration. The bilinear element developed does not allow false rigid displacements and is not subjected to the membrane, shear, or Poisson locking phenomenon. The results of solving the well-known test problem on a nonsymmetrically fixed circular arch subjected to a concentrated load and the problem on a locally loaded toroidal multilayer rubber-cord shell are presented.  相似文献   

4.
An algorithm is developed for the numerical solution of the contact problem of an elastic Timoshenko-type shell subjected to arbitrarily large displacements and rotations, using mixed finite-element approximations. It is essential that six displacements of the faces of the shell are chosen as the required functions. This enables one, first, to simplify the formulation of contact problems in the mechanics of thin-walled structures, since functions by means of which the conditions for the non-penetration of the bodies are formulated are chosen as the required functions and, second, to obtain relations for the components of the Green-Lagrange strain tensor in curvilinear, orthogonal coordinates which accurately represent arbitrarily large displacements of a shell as a rigid body.  相似文献   

5.
The dynamic properties of a hinged shell made from a composite material and subjected to combined loads are investigated by means of an orthotropic model. The problem is solved by means of the geometrically nonlinear dynamic equations of the theory of sloping shells, set up on the basis of the Kirchhoff-Love hypothesis. Various cases of loading are considered, i.e., the combined action of a longitudinal pulsating load and an external static pressure and also of a pulsating external pressure and a static axial compression. The wave processes at the middle surface are not taken into account. The system of resolvents is obtained by consecutive application of the variation and averaging methods. The results of the calculations are presented graphically and are analyzed in detail.Moscow. Translated from Mekhanika Polimerov, Vol. 9, No. 3, pp. 531–539, May–June, 1973.  相似文献   

6.
Based on a 7-parameter shell model, a numerical algorithm has been developed for solving a coupled problem of thermoelectroelasticity for a laminated piezoelectric shell subjected to a thermoelectromechanical loading. As unknowns, six tangential and transverse displacements of outer surfaces and the transverse displacement of shell midsurface are chosen. This choice provides a possibility of utilizing the complete 3D constitutive equations of thermopiezoelectricity. A geometrically exact 3D hybrid piezoelectric shell element is formulated by using nonconventional analytical integration. With the help of this finite element, solutions of coupled problems of thermoelectroelasticity for laminated plates and shells with segmented and distributed piezoelectric sensors and actuators are obtained.  相似文献   

7.
Nonlinear three-dimensional problems of dynamic deformation, buckling, and posteritical behavior of composite shell structures under pulsed loads are analyzed. The structure is assumed to be made of rigidly joined plates and shells of revolution along the lines coinciding with the coordinate directions of the joined elements. Individual structural elements can be made of both composite and conventional isotropic materials. The kinematic model of deformation of the structural elements is based on Timoshenko-type hypotheses. This approach is oriented to the calculation of nonstationary deformation processes in composite structures under small deformations but large displacements and rotation angles, and is implemented in the context of a simplified version of the geometrically nonlinear theory of shells. The physical relations in the composite structural elements are based on the theory of effective moduli for individual layers or for the package as a whole, whereas in the metallic elements this is done in the framework of the theory of plastic flow. The equations of motion of a composite shell structure are derived based on the principle of virtual displacements with some additional conditions allowing for the joint operation of structural elements. To solve the initial boundary-value problem formulated, an efficient numerical method is developed based on the finite-difference discretization of variational equations of motion in space variables and an explicit second-order time-integration scheme. The permissible time-integration step is determined using Neumann's spectral criterion. The above method is especially efficient in calculating thin-walled shells, as well as in the case of local loads acting on the structural element, when the discretization grid has to be condensed in the zones of rapidly changing solutions in space variables. The results of analyzing the nonstationary deformation processes and critical loads are presented for composite and isotropic cylindrical shells reinforced with a set of discrete ribs in the case of pulsed axial compression and external pressure.Scientific Research Institute of Mechanics, Lobachevskii Nizhegorodsk State University, N. Novgorod, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 6, pp. 757–776, November–December, 1999.  相似文献   

8.
The stability of a cylindrical glass-reinforced plastic shell subjected to external pressure is considered in the geometrically nonlinear formulation with allowance for initial irregularities. The refined shell theory [6, 7], which enables transverse shear strains to be taken into account, is employed. A general algorithm of the solution has been written in ALGOL-60. A numerical solution of the problem has been obtained on a BÉSM-3M computer. Critical loads have been determined over a wide range of variation of the geometrical and physical parameters of the shell. It is established that the difference between the results of the classical and refined theories depends on the thickness, length, and physical parameters of the shell. The classical theory is asymptotically exact as the thickness of the shell tends to zero or the interlaminar shear modulus tends to infinity.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 857–862, September–October, 1969.  相似文献   

9.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Based on a previously constructed, consistent version of the geometrically non-linear equations of elasticity theory, for small deformations and arbitrary displacements, and a Timoshenko-type model taking into account transverse shear and compressive deformations, one-dimensional equations of an improved theory are derived for plane curvilinear rods of arbitrary type for arbitrary displacements and revolutions and with loading of the rods by follower and non-follower external forces. These equations are used to construct linearized equations of neutral equilibrium that enable all possible classical and non-classical forms of loss of stability (FLS) of rods of orthotropic material to be investigated, ignoring parametric deformation terms in the equations. These linearized equations are used to find accurate analytical solutions of the problem of plane classical flexural-shear and non-classical flexural-torsional FLS of a circular ring under the combined and separate action of a uniform external pressure and a compression in the radial direction by forces applied to both faces.  相似文献   

11.
The Hu-Washizu functional is constructed for analyzing prestressed multilayer anisotropic Timoshenko-type shells. As unknown functions, six displacements and eleven strains of the faces of the shells are chosen. Based on mixed finite-element approximations, a numerical algorithm is developed for solving linear static problems of prestressed multilayer composite shells. The results of solving the well-known test problem on a cylindrical shell subjected to two opposite point forces and the problem on local loading of a toroidal multilayer rubber-cord shell are presented.  相似文献   

12.
The dynamic characteristics of an elastic wing panel made of composite material are investigated in relation to the transient processes in a gas flow. The problem is solved using the geometrically nonlinear equations of shallow orthotropic shells and the numerical methods of linearized nonsteady aerodynamics. The displacements are determined by a finite-difference method and the aerodynamic load intensity by means of a model of a thin lifting surface. The numerical results are presented in the form of graphs reflecting the laws of deformation of the middle surface of the panel and pressure distribution and their development with time. Curves characterizing the motion of individual points in relation to the parameters reflecting the anisotropic properties of the panel are also constructed.Moscow. Translated from Mekhanika Polimerov, No. 4, pp. 662–669, July–August, 1974.  相似文献   

13.
A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled composite beam. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). In the analysis of a weakly nonlinear continuous system, the Ritz’s method is employed to express the problem in terms of generalized coordinates. Then, perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. In this paper, the non-linear 3D oscillations of a simply-supported beam are examined, considering a cross-section having one symmetry axis. Composite is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The model, which contains both quadratic and cubic non-linearities, is assumed to be in internal resonance condition. Steady-state solution and their stability are investigated by means of the eigenvalues of the Jacobian matrix. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle noddle, Hopf and double period bifurcations.  相似文献   

14.
This paper aims to investigate linear and nonlinear behavior of beams subjected to externally applied partially distributed follower forces. In this investigation, the nonlinear composite beam theory of Hodges is used. The system of nonlinear equations is linearized about the equilibrium, or rest structure state, and the linear system is solved numerically. The effects of follower force position on the behavior of eigenvalues at pre- and post-instability are reported. Additionally, the contours of critical follower force are obtained by changing the position of follower force in span-wise and chord-wise directions. The effects of different parameters such as the length, and position of follower force and the ratios of stiffnesses on the critical follower force as well as the nonlinear limit cycle oscillation (LCO) are reported. The obtained results indicate that the length and the position of the partially distributed follower forces considerably affect the stability of the beam.  相似文献   

15.
We state in general form the principle of possible displacements for a “shell-fluid” mechanical system, on the basis of which it is possible to solve dynamic problems taking account of a geometrically nonlinear process of deformation of the shell and nonpotential motions of a viscous fluid. It is shown that this principle yields the equations of motion of the shell and fluid as components of this system, confirming the reliability of the principle. The conditions of force contact are taken into account as a load term in the equations of motion of the shell. Bibliography: 5 titles. Translated fromTeoreticheskaya i Prikladnaya Mekhanika, No. 26, 1996, pp. 117–123.  相似文献   

16.
Christoph Adam 《PAMM》2006,6(1):283-284
This paper addresses geometrically nonlinear flexural vibrations of open doubly curved shallow shells composed of three thick isotropic layers. The layers are perfectly bonded, and thickness and linear elastic properties of the outer layers are symmetrically arranged with respect to the middle surface. The outer layers and the central layer may exhibit extremely different elastic moduli with a common Poisson's ratio ν. The considered shell structures of polygonal planform are hard hinged supported with the edges fully restraint against displacements in any direction. The kinematic field equations are formulated by layerwise application of a first order shear deformation theory. A modification of Berger's theory is employed to model the nonlinear characteristics of the structural response. The continuity of the transverse shear stress across the interfaces is specified according to Hooke's law, and subsequently the equations of motion of this higher order problem can be derived in analogy to a homogeneous single-layer shear deformable shallow shell. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this article, large deflection and rotation of a nonlinear beam subjected to a coplanar follower static loading is studied. It is assumed that the angle of inclination of the force with respect to the deformed axis of the beam remains unchanged during deformation. The governing equation of this problem is solved analytically for the first time using a new kind of analytic technique for nonlinear problems, namely, the homotopy analysis method (HAM). The present solution can be used in wide range of load and length for beams under large deformations. The results obtained from HAM are compared with those results obtained by fourth order Range Kutta method. Finally, the load‐displacement characteristics of a uniform cantilever under a follower force normal to the deformed beam axis are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27:541–553, 2011  相似文献   

18.
An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1) a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.  相似文献   

19.
Based on linearized equations of the theory of elastic stability of straight composite bars with a low shear rigidity, which are constructed using the consistent geometrically nonlinear equations of elasticity theory for small deformations and arbitrary displacements and a kinematic model of Timoshenko type, exact analytical solutions of nonclassical stability problems are obtained for a bar subjected to axial compression and torsion for various modes of end fixation. It is shown that the problem of direct determination of the critical parameter of the compressive load at a given torque parameter leads to transcendental characteristic equations that are solvable only if bar ends have cylindrical hinges. At the same time, we succeeded in obtaining solutions to these equations in terms of wave formation parameters of the bar; these parameters, in turn, enabled us to find the parameter of the critical load at any boundary conditions. Also, an algorithm for numerical solution of the problems stated is proposed, which is based on reducing the problems to systems of integroalgebraic equations with Volterra-type operators and on solving these equations by the method of mechanical quadratures (finite sums). It is demonstrated that such numerical solutions exist only for certain ranges of parameters of the bar and of the parameter of torque. In the general case, they can not be obtained by the numerical method used. It is also shown that the well-known solutions of the stability problem for a bar subjected to torsion or to compression with torsion are in correct. Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 2, pp. 167–200, March–April, 2009.  相似文献   

20.
A variational function of the dynamics of a thin shallow composite shell of regular structure is derived on the basis of a mixed variational principle of geometrically nonlinear elasticity theory. The shell consists of alternating elastic bonding layers and binder layers. The condition of stationarity of the functional permits obtaining the fundamental dynamics equations for a sandwich shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号