首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potentiodynamic anodic polarisation and dynamic electrochemical impedance spectroscopic (DEIS) measurements were carried out on 316L stainless steel and alloys 926 and 31 in natural seawater in order to assess the crevice corrosion resistance. DEIS measurements were performed over a wide range of potentials covering the corrosion potential, passive region, breakdown region and dissolution region. The impedance measurements in potentiodynamic conditions clearly reveal the changes that occur in the passive layer with change in potential. The impedance spectra at different potential regions were also discussed elaborately. The surface morphology of the alloy after crevice corrosion was studied using optical microscope and atomic force microscopy.  相似文献   

2.
The effect of zirconia and zirconia-polyester glycol hybrid coatings on the corrosion resistance of mechanically polished or anodized AISI 316 stainless steel (316L), was studied by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.1 M NaCl and scanning electron microscope and atomic force microscopy examinations. The deposition of zirconia coatings was achieved by the sol–gel technique by immersing the samples in either the inorganic polymer or the organic–inorganic polymer mixture. From potentiodynamic and impedance measurements, the grade of protection is reduced with the exposure time to the electrolyte, which is mainly associated with lost of film adhesion and, consequently, detachment from the metal substrate. However, the uncoated anodized sample revealed an unexpected corrosion behavior; the anodic film formed during anodizing readily increased the corrosion resistance of the 316L stainless steel in 0.1 M NaCl, revealing a considerable reduction in the corrosion current density and an increase in the pitting potential.  相似文献   

3.
The objective of the present study was to introduce a cost-effective and environmentally friendly coating to improve the corrosion resistance of the structures located in salt water. The coating solution, based on amorphous aluminum phosphate composition, was synthesized by sol–gel process and applied to AISI 304 stainless steel by dip coating technique. X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy analyses were employed to investigate the phase composition and morphology of the coating. Corrosion behavior of the uncoated and coated samples was investigated using standard salt spray test, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Salt spray test results for the bare substrate revealed a corrosion rate of six-time greater than that of the coated surface after 168 hr exposure time. Electrochemical test results declared that the amorphous AlPO4 coating decreased the corrosion current density of the AISI 304 stainless steel by 10 orders of magnitude. Furthermore, according to the corresponding EIS measurements, the coated surface exhibited a superior anti-corrosion performance than uncoated sample. Overall, the results declared that the amorphous AlPO4 coating could be a good choice for surface protection of stainless steel against electrochemical corrosion in salty environments.  相似文献   

4.
The corrosion behaviours of austenitic stainless steels were investigated by electrochemical methods under plastic deformation with constant strain in the naturally aerated 0.5 M H2SO4 + 0.2 M KCl solution at room temperature. The work addresses the influence of plastic deformation and molybdenum element on the corrosion resistance of austenitic stainless steels in the test solution. Electrochemical impedance spectroscopy presents the decreasing charge transfer resistance (Rt) and polarization resistance (Rp) values with the immersion time for AISI 304 stainless steel under constant strain deformation, and the increasing Rt and Rp values with the immersion time for AISI 316 stainless steel. The analysis of the chemical composition of the corrosion products was carried out by XPS. Molybdenum addition in AISI 316 stainless steel affects significantly the corrosion resistance because of its high ability to form Mo (VI) and MoCl5 insoluble compounds in acid medium. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Electrochemical impedance spectroscopy and XPS studies on AISI 304 stainless steel in naturally aerated 0.5 M H2SO4 solution were carried out at room temperature. The valuable model of the metal/solution interphase was established, and the reliable equivalent electrical circuits in the solution were presented. The analysis of the chemical composition of passive film on AISI 304 stainless steel was carried out by XPS. The passive film of AISI 304 stainless steel is composed of oxyhydroxides, Fe2O3, FeO, Cr2O3, NiO, sulfate, sulfite, and sulfide (FeS, NiS). It is reported that the ferrous sulfide film formed on AISI 304 stainless steel in the dilute sulfuric acid solution. The possible process in which sulfuric acid is reduced to sulfite and sulfide is proposed. The galvanic interaction of sulfide inclusions with the base alloy is introduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
An investigation about the corrosion resistance of Ni-Al-Fe intermetallic alloys in simulated human body fluid environments has been carried out using electrochemical techniques. Tested alloys included 57 (wt%) Ni-(20 to 30) Al-(12 to 23) Fe using the Hank's solution because the high corrosion resistance provided by protective Al2O3 external layer. For comparison, AISI 316L type stainless steel has also been used. Electrochemical techniques included potentiodynamic polarization curves, electrochemical impedance spectroscopy, and electrochemical noise measurements. The different techniques have shown that these alloys showed a similar or higher corrosion resistance than conventional AISI 316L type stainless steel, and this corrosion resistance decreased as the Al content in the alloy increased. The alloys were susceptible to pitting type of corrosion on the interdendritic Ni-rich phases.  相似文献   

7.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

8.
The inhibition effect of hexadecyl pyridinium bromide (HDPB) as a cationic surfactant on the corrosion behavior of some Egyptian austenitic stainless steel SS 304L, SS 316H and SS 304H in 0.5 M H2SO4 solutions was investigated by using potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The results indicate that HDPB is a good inhibitor for the samples under investigation in 0.5 M H2SO4 solutions. In addition, the inhibition efficiency η% increases with the inhibitor concentration while decreases with the increasing temperature referring to physical adsorption. The adsorption of the inhibitor obeys a Temkin adsorption isotherm. Polarization curves show that HDPB is a mixed inhibitor in H2SO4 solutions. The results obtained from polarization and impedance measurements are in good agreement. Activation-free energies, enthalpies, and entropies for the inhibition process of HDPB were determined.  相似文献   

9.
Poly(o-toluidine) (POT) coatings were electrochemically synthesized on 304 stainless steel using cyclic voltammetric method. These coatings were characterized by Fourier transform infrared spectroscopy, UV–vis absorption spectroscopy, and cyclic voltammetry. The corrosion performance of POT coating in aqueous 3 wt% sodium chloride was assessed by the electrochemical techniques such as open circuit potential measurements, potentiodynamic polarization technique, cyclic potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. The results reveal that POT coating on 304 stainless steel prevents general and localized corrosion, and reduces the exchange current density almost by a factor of 45 than bare 304 stainless steel.  相似文献   

10.
The corrosion inhibition of X-70 pipeline steel in saltwater saturated with CO2 at 50 °C with carboxyamido imidazoline has been evaluated by using electrochemical techniques. Techniques included polarization curves, linear polarization resistance, electrochemical impedance, and electrochemical noise measurements. Inhibitor concentrations were 0, 1.6 × 10−5, 3.32 × 10−5, 8.1 × 10−5, 1.6 × 10−4, and 3.32 × 10−4 mol l−1. All techniques showed that the best corrosion inhibition was obtained by adding 8.1 × 10−5 mol l−1 of carboxyamido imidazoline. For inhibitor concentrations higher than 8.1 × 10−5 mol l−1 a desorption process occurs, and an explanation has been given for this phenomenon.  相似文献   

11.
通过扫描微电极法研究敏化处理奥氏体不锈钢(304ss)的局部腐蚀行为,并结合传统电化学方法及光学显微镜进行测试观察. 结果表明,在10% FeCl3溶液未敏化处理(304ss-NS)或550 oC轻度敏化处理(304ss-S1)的不锈钢倾向于发生点腐蚀,而650 oC(304ss-S2)或750 oC(304ss-S3)深度敏化处理不锈钢则倾向于发生晶间腐蚀.  相似文献   

12.
13.
The electrochemical behavior of brass-MM55 alloy was studied in artificial seawater with benzotriazole by using a novel method called dynamic electrochemical impedance spectroscopy (DEIS). This method gives possibility to investigate the protection of metals in corrosive medium by using inhibitors in galvanostatic conditions for a long time. Instantaneous impedance spectra for brass-MM55 were recorded for 10 h in artificial seawater for different concentration of benzotriazole. It was found that a few hours were not enough for the accurate calculation of corrosion inhibition. Also with this method it is possible to figure out how the charge transfer resistance (R ct) changes by the time. Usefulness of the DEIS technique in the investigation of non-stationary phenomena has been proved in the field of inhibitor research. All studies clearly show that benzotriazole inhibits the corrosion of brass-MM55 alloy in artificial seawater solution and the value of inhibition efficiency increases with increasing concentration of benzotriazole.  相似文献   

14.
The present study describes preliminary results on the corrosion resistance of injection molded 17-4 PH stainless steel potentiostatically coated with poly {trans-[RuCl2(vpy)4]}, where vpy (4-vinylpyridine) acts as a ligand. The coated electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy, as well as by electrochemical techniques. The microstructural analysis indicated that the films reached up to 100 μm thickness. Cyclic voltammetry was carried out in 0.1 M tetrabutylammonium hexafluorophosphate/methyl isobutyl ketone. The results revealed a scan rate dependent wave corresponding to a Ru2+/Ru3+ redox reaction, thus confirming the presence of ruthenium in the films. Anodic polarization tests were performed in 3% NaCl in order to estimate the anodic dissolution current density and the corrosion rate of the material. The results indicated that coating the substrate improved the corrosion resistance of the material. Received: 13 May 1999 / Accepted: 14 October 1999  相似文献   

15.
Nickel-based coatings are potential candidates for the protection of electrochemical dissolution of steel surfaces. Such coatings, elaborated by magnetron sputtering in a nitrogen atmosphere, offer good corrosion protection, good adherence as well as stability for metallic structures. NiCr alloys with almost constant composition have been deposited with different nitrogen contents on stainless steel and carbon steel surfaces. The coating uniformity, homogeneity, composition and crystallinity have been studied by scanning electron microscopy, energy-dispersive X-ray spectrometry, atomic force microscopy and X-ray diffraction techniques. The corrosion degradation behavior of all the samples was tested in NaCl and NaCl and CO2 mixture exposures using electrochemical impedance spectroscopy measurements. Nitrided NiCr alloys on a stainless steel substrate resulted with better adhesion than carbon steel, by delaying the corrosion mechanism when exposed to NaCl and CO2 solution. A comparison of the corrosion resistive behavior of the substrates (stainless steel, carbon steel) and the coatings is made by using the electrical capacitance concept from a double-layer model for the coating–metal interface.  相似文献   

16.
应用电化学动电位再活化法(EPR法)评价不锈钢复合板和低铬铁素体不锈钢的晶间腐蚀敏感性. 结果表明,以电化学动电位再活化法测得的反向扫描与正向扫描电流最大值之比(ir / ia)评价堆焊不锈钢复合板00Cr17Ni14Mo2/20R复层晶间敏感性与传统H2SO4-CuSO4-Cu法测定的结果吻合甚好;评价爆炸复合板复层06Cr13R低铬铁素体不锈钢晶间腐蚀敏感性与草酸浸蚀法测定的也一致. 说明该法可以成功用于定量、定性地评价不锈钢复合板和低铬铁素体不锈钢的晶间腐蚀敏感性.  相似文献   

17.
Electrochemical impedance spectroscopy allows the examination of corrosion susceptibility and resistance for different construction materials, in particular the determination of the properties of their passive films. This technique makes possible the analysis of electrochemical processes in time domain, including rapid phenomena such as changes in the properties of passive films, but it has never been used for passive layer cracking examination. In many cases, fracture of the passive film under tensile stresses leads to stress corrosion cracking. Therefore, investigations of passive layer cracking on austenitic stainless steels under tensile stresses facilitate the understanding of the mechanism of stress corrosion cracking in these common engineering materials. The effect of static tensile stresses on the passive film cracking behaviour of type 304L stainless steel immersed in 0.5 M NaCl solution at room temperature has been investigated. This paper presents the impedance spectra obtained for 304L stainless steel samples at different potential values.Contribution to the 3rd Baltic Conference on Electrochemistry, Gdansk-Sobieszewo, Poland, 23–26 April 2003Dedicated to the memory of Harry B. Mark, Jr. (28 February 1934–3 March 2003)  相似文献   

18.
The purpose of this work is to investigate the electropolishing of medical-grade 316 L stainless steel to obtain a clean, smooth, and defect-free surface in preparation for surface nano-texturing. Electropolishing of steel was conducted under stationary conditions in four electrolyte mixtures: (A) 4.5 M H2SO4 + 11 M H3PO4, (B) 7.2 M H2SO4 + 6.5 M H3PO4, (C) 6.4 M glycerol + 6.1 M H3PO4, and (D) 6.1 M H3PO4. The influence of electrolyte composition and concentration, temperature, and electropolishing time, in conjunction with linear sweep voltammetry and chronoamperometry, on the stainless steel surface was studied. The resulting surfaces of unpolished and optimally polished stainless steel were characterized in terms of contamination, defects, topography, roughness, hydrophilicity, and chemical composition by optical and atomic force microscopies, contact angle goniometry, and X-ray photoelectron spectroscopy. It was found that the optimally polished surfaces were obtained with the following parameters: electrolyte mixture A at 2.1 V of applied potential at 80 °C for 10 min. This corresponded to the diffusion-limited dissolution of the surface. The root mean square surface roughness of the electropolished surface achieved was 0.4 nm over 2 × 2 μm2. Surface analysis showed that electropolishing led to ultraclean surfaces with reduced roughness and contamination thickness and with Cr, P, S, Mo, Ni, and O enrichment compared to untreated surfaces.  相似文献   

19.
This study examined the early stages of tarnishing of American Iron Steel Institute (AISI) 304L austenitic stainless steel (SS) condenser tubes in contact with running freshwater from the Tagus River in Spain. The immersion time of the tubes was 569 days. Tarnishing originated by biofouling was assessed using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses in conjunction with argon ion sputtering. The EIS diagrams showed a semicircle that was better defined as the experimental time increased, indicating the decreasing tarnishing resistance of the immersed specimens. The EIS results were validated using Kramers–Kronig relationships. SEM micrographs of biofouling indicated that the number of microorganisms on the SS surfaces increased with immersion time. According to the XPS spectra, the main elements deposited on the tarnished AISI 304L SS layer were calcium, phosphorus, and nitrogen. A mechanism of biofouling and microbiologically influenced corrosion behavior of AISI 304L SS condenser tubes in freshwater is proposed.  相似文献   

20.
Electrochemical impedance spectroscopy (EIS) and Kramers–Kronig (K–K) transforms were made on American Iron and Steel Institute (AISI) 304 stainless steel (SS) in naturally aerated sulfuric acid solution at room temperature. The K–K relations testify that the systems under investigation comply with the linearity, causality, and stability constraints of linear system theory (LST) and thereby validate the EIS data. The polarization resistance decreased with removing of passive film and pitting formed in the passive layer, due to layer thinning or pitting caused by chloride. The impedance data for 304 SS with passive films can be accurately modeled using individual components of the equivalent circuits. The polarization resistances (Rp) of the 304 SS can be confirmed by Nyquist plots and estimated from the anodic polarization curves. The reaction model of the dissolution‐passivation process of 304 SS in acid solution is proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号