首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the usual Fedosov construction of star products for a symplectic manifold M, we give a simple geometric construction of a bimodule deformation for the sections of a vector bundle over M starting with a symplectic connection on M and a connection for E. In the case of a line bundle, this gives a Morita equivalence bimodule, and the relation between the characteristic classes of the Morita equivalent star products can be found very easily within this framework. Moreover, we also discuss the case of a Hermitian vector bundle and give a Fedosov construction of the deformation of the Hermitian fiber metric.  相似文献   

2.
3.
4.
We have found in the nanoprobe-photoluminescnece (PL) measurement that the PL from InGaAs quantum dots was enhanced remarkably by small elastic indentation of the nanoprobe onto the sample surface. In order to clarify the mechanism of the PL enhancement, the nanoprobe-induced strain distribution and the energy-band profiles in the bulk GaAs have been calculated on the bases of linear continuum elastic theory and six-band strain Hamiltonian. It was found that the nm-scale strain modulation by the nanoprobe indentation results in the confinement potential for light holes 50–70 nm beneath the nanoprobe, revealing that the hole accumulation into the minimum causes the PL enhancement.  相似文献   

5.
Many non-linear classical mechanical systems arise as the symplectic reductions of linear systems. The star products on the corresponding quantized algebras can be derived from the Weyl-Moyal product on the algebras of the linear systems. An algebraic approach to Berezin quantization is sketched.  相似文献   

6.
Combined quantum wire and quantum dot system is theoretically predicted to show unique conductance properties associated with Coulomb interactions. We use a split gate technique to fabricate a quantum wire containing a quantum dot with two tunable potential barriers in a two-dimensional electron gas. We observe the effects of the quantum dot cavity on the electron transport through the quantum wire, such as Coulomb oscillations near the pinch-off voltage and periodic conductance oscillations on the first conductance plateau.  相似文献   

7.
An AlGaAs/GaAs lateral quantum dot of triangular shape with a characteristic size L<100 nm containing less than ten electrons was studied. Single-electron oscillations of the conductance G of this dot were measured at G<e2/h. When going from Ge2/h to G≈0.5e2/h, a decrease was found not only in the amplitude but also in the period of the oscillations. A calculation of the 3D-electrostatics demonstrated that this effect is due to a change in the dot size produced by control voltages.  相似文献   

8.
We analyze the electroluminescence spectrum of an STM-tip-induced quantum dot in a GaAs surface layer. A flexible model has been developed, that combines analytical and numerical methods and describes the key features of many-particle states in the STM-tip-induced quantum dot. The dot is characterized by its depth and lateral width, which are experimentally controlled by the bias and the tunneling current. We find, in agreement with experiment, that increasing voltage on the STM-tip results in a red shift of the electroluminescence peaks, while the peak positions as a function of the electron tunneling current through the STM-tip reveal a blue shift.  相似文献   

9.
We have investigated the carrier relaxation dynamics in single columns of tenfold stacked vertically aligned InAs quantum dots by micro-photoluminescence measurement. The excitation spectrum in the stacked dots is much different from that in the single dot characterized by the existence of a zero-absorption region and sharp multiple phonon emission lines. We have observed a broad continuum absorption far below the wetting layer band edge in the spectrum of the single columns although we have confirmed the existence of a zero-absorption region in the same sample with reduced number of dot layers to almost single, realized by surface etching. The broad absorption feature suggests the existence of additional carrier relaxation channels through non-resonant tunneling between the dots.  相似文献   

10.
The properties of open quantum dots are examined in magneto-transport. The quantum dots are prepared from a two-dimensional electron system (2DES) in AlGaAs/GaAs by lateral gate structures. These quantum dots are open, i.e. they are still connected to the surrounding 2DES regions. The low magnetic field magnetoresistance shows peak structures. These structures can be related to semi-classical ballistic trajectories in the confining potential of a dot. The calculations of different confining potentials (abrupt “hard-wall” and parabolic “soft-wall”) are compared with the experimental results. The experiments are better described by a soft-wall potential.  相似文献   

11.
12.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

13.
Coupled nanostructures have been developed in the InAs/InSb/GaSb materials system in order to extend the emission wavelength further into the infrared, beyond 2 μm. The samples studied consist of a single narrow InAs quantum well grown below a layer of InSb quantum dots in a GaSb matrix, in which the coupling has been altered by changing the thickness of a GaSb spacer layer. The overall transition energy of the combined dot–well system is generally reduced with respect to the dots and well only but the dependence on spacer thickness is more complex than that expected from a simple envelope function model.  相似文献   

14.
We propose a new quantum network scheme using orbital angular momentum states of photons to route the network and spin angular momentum states to encode the information. A four-user experimental scheme based on this efficient quantum network is analyzed in detail, which is particularly appealing for the free space quantum key distribution. Users can freely exchange quantum keys with each other.  相似文献   

15.
We studied optical and electron transport properties of coupled InAs quantum dots (QDs) embedded in GaAs. Photoluminescence (PL) from the high dot density samples indicated asymmetry in the PL spectra when the ambient temperature is lower than about 50 K. Comparing this result with theoretical calculations, it is shown that this phenomenon is explained by the inter-dot electronic coupling effect. In the photo-conductance measurement, resonance peaks in the current–voltage characteristics were observed in the low-temperature region. The dependence of the resonance voltage on the magnetic field intensity was studied to extract the g-factor. It is also shown that the resonances are attributed to the current corresponding to the electron transport through QDs. According to these results, it is concluded that the inter-dot electronic coupling in the self-assembled InAs/GaAs QD systems occurs when the inter-dot spacing is as low as several nanometers and the ambient temperature is less than about 50 K.  相似文献   

16.
We fabricated InAs quantum dots (QDs) with a GaAsSb strain-reducing layer (SRL) on a GaAs(0 0 1) substrate. The wavelength of emission from InAs QD is shown to be controllable by changing the composition and thickness of the SRL. An increase in photoluminescence intensity with increasing compositions of Sb and thickness of the GaAsSb SRL is also seen. The efficiency of radiative recombination was improved under both conditions because the InAs/GaAsSb/GaAs hetero-interface band structure more effectively suppressed carrier escape from the InAs QDs.  相似文献   

17.
We show how the atomistic pseudopotential many-body theory of InGaAs/GaAs addresses some important effects, including (i) the fine-structure splittings (originating from interband spin exchange), (ii) the optical spectra of charged quantum dots and (iii) the degree of entanglement in a quantum dot molecule.  相似文献   

18.
We discuss a technique that allows us to grow high-density GaSb and InGaSb quantum dots (QDs) on (0 0 1)-oriented GaAs substrates. We study the use of Si atom irradiation on the substrate surface as an anti-surfactant before the QDs fabrication. It is clear that the densities of GaSb and InGaSb QDs are drastically enhanced with the Si atom irradiation. Photoluminescence intensities from these QDs are also increased with the Si atom irradiation. These results indicate that the Si atom irradiation technique is useful to improve the properties of the Sb-based QDs.  相似文献   

19.
We report the successful growth of ZnSe and ZnTe quantum dots (QDs) embedded in ZnS on GaAs substrate. These QDs have good optical properties and show quantum confinement effect. High-resolution electron scanning microscope studies show that these QDs are grown in Volmer–Weber mode. It is found that the size of the QDs is controlled by the growth duration. When the growth time is short, high density of QDs could be fabricated, but with a long growth time the small QDs get together to form a large cluster. We also show that with this growth method it is possible to grow both ZnSe quantum and ZnTe QDs on one substrate at the same time. For this dual QDs system, two peaks corresponding to the emission from the ZnSe dots (3.0 eV, blue–violet) and ZnTe dots (2.6 eV, green–blue) could be observed at the same time in the photoluminescence measurement.  相似文献   

20.
We report the first direct observation of Huang–Rhys side-bands in the photoluminescence spectrum of a single InAs/GaAs quantum dot (QD). At low temperature (10 K) the single QD spectrum has a quasi-Lorentzian profile. At higher temperatures, we observe a strong deviation from a Lorentzian profile with the appearance of asymmetric side-bands which become symmetric above 70 K. We obtain an excellent agreement with theoretical calculations done in the framework of the Huang–Rhys formalism. We conclude that the zero-phonon linewidth is the relevant parameter for the observation of the low-energy acoustic phonon side-bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号