首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate Kerr–Newman black holes in which a rotating charged ring-shaped singularity induces a region which contains closed timelike curves (CTCs). Contrary to popular belief, it turns out that the time orientation of the CTC is opposite to the direction in which the singularity or the ergosphere rotates. In this sense, CTCs “counter-rotate” against the rotating black hole. We have similar results for all spacetimes sufficiently familiar to us in which rotation induces CTCs. This motivates our conjecture that perhaps this counter-rotation is not an accidental oddity particular to Kerr–Newman spacetimes, but instead there may be a general and intuitively comprehensible reason for this.  相似文献   

2.
Numerical simulations of the approach to the singularity in vacuum spacetimes are presented here. The spacetimes examined have no symmetries and can be regarded as representing the general behavior of singularities. It is found that the singularity is spacelike and that, as it is approached, the spacetime dynamics becomes local and oscillatory.  相似文献   

3.
The most detailed existing proposal for the structure of spacetime singularities originates in the work of Belinskii, Khalatnikov and Lifshitz. We show rigorously the correctness of this proposal in the case of analytic solutions of the Einstein equations coupled to a scalar field or stiff fluid. More specifically, we prove the existence of a family of spacetimes depending on the same number of free functions as the general solution which have the asymptotics suggested by the Belinskii–Khalatnikov–Lifshitz proposal near their singularities. In these spacetimes a neighbourhood of the singularity can be covered by a Gaussian coordinate system in which the singularity is simultaneous and the evolution at different spatial points decouples. Received: 17 January 2000 / Accepted: 27 November 2000  相似文献   

4.
We prove theorems on existence, uniqueness and smoothness of maximal and constant mean curvature compact spacelike hypersurfaces in globally hyperbolic spacetimes. The uniqueness theorem for maximal hypersurfaces of Brill and Flaherty, which assumed matter everywhere, is extended to spacetimes that are vacuum and non-flat or that satisfy a generic-type condition. In this connection we show that under general hypotheses, a spatially closed universe with a maximal hypersurface must be Wheeler universe; i.e. be closed in time as well. The existence of Lipschitz achronal maximal volume hypersurfaces under the hypothesis that candidate hypersurfaces are bounded away from the singularity is proved. This hypothesis is shown to be valid in two cases of interest: when the singularities are of strong curvature type, and when the singularity is a single ideal point. Some properties of these maximal volume hypersurfaces and difficulties with Avez' original arguments are discussed. The difficulties involve the possibility that the maximal volume hypersurface can be null on certain portions; we present an incomplete argument which suggests that these hypersurfaces are always smooth, but prove that an a priori bound on the second fundamental form does imply smoothness. An extension of the perturbation theorem of Choquet-Bruhat, Fischer and Marsden is given and conditions under which local foliations by constant mean curvature hypersurfaces can be extended to global ones is obtained.  相似文献   

5.
The indefinite sign of the Hamiltonian constraint means that solutions to Einstein's equations must achieve a delicate balance – often among numerically large terms that nearly cancel. If numerical errors cause a violation of the Hamiltonian constraint, the failure of the delicate balance could lead to qualitatively wrong behavior rather than just decreased accuracy. This issue is different from instabilities caused by constraint-violating modes. Examples of stable numerical simulations of collapsing cosmological spacetimes exhibiting local mixmaster dynamics with and without Hamiltonian constraint enforcement are presented.  相似文献   

6.
Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a singular FLRW spacetime obeys conditions (39) and (40), every point on that geodesic is part of a pair of conjugate points. The proof is based on the Raychaudhuri equation. We find that the theorem is applicable to all non-comoving, non-spacelike geodesics in FLRW spacetimes with non-negative spatial curvature and scale factors that near the singularity have power law behavior or power law behavior times a logarithm. When the spatial curvature is negative, the theorem is applicable to a subset of these spacetimes.  相似文献   

7.
It is shown that in a class of maximal globally hyperbolic spacetimes admitting two local Killing vectors, the past (defined with respect to an appropriate time orientation) of any compact constant mean curvature hypersurface can be covered by a foliation of compact constant mean curvature hypersurfaces. Moreover, the mean curvature of the leaves of this foliation takes on arbitrarily negative values and so the initial singularity in these spacetimes is a crushing singularity. The simplest examples occur when the spatial topology is that of a torus, with the standard global Killing vectors, but more exotic topologies are also covered. In the course of the proof it is shown that in this class of spacetimes a kind of positive mass theorem holds. The symmetry singles out a compact surface passing through any given point of spacetime and the Hawking mass of any such surface is non-negative. If the Hawking mass of any one of these surfaces is zero then the entire spacetime is flat. Received: 15 July 1996 / Accepted: 12 March 1997  相似文献   

8.
Klein-Gordon, Maxwell and Dirac fields are studied in quasiregular spacetimes, those space-times containing a classical quasiregular singularity, the mildest true classical singularity [G. F. R. Ellis and B. G. Schmidt, Gen. Rel. Grav. 8, 915 (1977)]. A class of static quasiregular spacetimes possessing disclinations and dislocations [R. A. Puntigam and H. H. Soleng, Class. Quantum Grav. 14, 1129 (1997)] is shown to have field operators which are not essentially self-adjoint. This class of spacetimes includes an idealized cosmic string, i.e. a four-dimensional spacetime with a conical singularity [L. H. Ford and A. Vilenkin, J. Phys. A: Math. Gen. 14, 2353 (1981)] and a Gal'tsov/Letelier/Tod spacetime featuring a screw dislocation [K. P. Tod, Class. Quantum Grav. 11, 1331 (1994); D. V. Gal'tsov and P. S. Letelier, Phys. Rev. D 47, 4273 (1993)]. The definition of G. T. Horowitz and D. Marolf [Phys. Rev. D52, 5670, (1995)] for a quantum-mechanically singular spacetime is one in which the spatial-derivative operator in the Klein-Gordon equation for a massive scalar field is not essentially self-adjoint. The definition is extended here, in the case of quasiregular spacetimes, to include Maxwell and Dirac fields. It is shown that the class of static quasiregular spacetimes under consideration is quantum-mechanically singular independent of the type of field.  相似文献   

9.
The nature of the initial singularity in spatially compact plane symmetric scalar field cosmologies is investigated. It is shown that this singularity is crushing and velocity dominated and that the Kretschmann scalar diverges uniformly as it is approached. The last fact means in particular that a maximal globally hyperbolic spacetime in this class cannot be extended towards the past through a Cauchy horizon. A subclass of these spacetimes is identified for which the singularity is isotropic.  相似文献   

10.
Physical considerations strongly indicate that spacetime at Planck scales is noncommutative. A popular model for such a spacetime is the Moyal plane. The Poincaré group algebra acts on it with a Drinfel’d-twisted coproduct, however the latter is not appropriate for more complicated spacetimes such as those containing Friedman-Sorkin (topological) geons. They have rich diffeomorphisms and mapping class groups, so that the statistics groups for N identical geons is strikingly different from the permutation group S N . We generalise the Drinfel’d twist to (essentially all) generic groups including finite and discrete ones, and use it to deform the commutative spacetime algebras of geons to noncommutative algebras. The latter support twisted actions of diffeomorphisms of geon spacetimes and their associated twisted statistics. The notion of covariant quantum fields for geons is formulated and their twisted versions are constructed from their untwisted counterparts. Non-associative spacetime algebras arise naturally in our analysis. Physical consequences, such as the violation of Pauli’s principle, seem to be one of the outcomes of such nonassociativity. The richness of the statistics groups of identical geons comes from the nontrivial fundamental groups of their spatial slices. As discussed long ago, extended objects like rings and D-branes also have similar rich fundamental groups. This work is recalled and its relevance to the present quantum geon context is pointed out.  相似文献   

11.
A sequence of exact spacetimes is obtained describing the fields of a Schwarzschild black hole surrounded by stable static axisymmetric thin discs having their inner rim at the least possible radius. In the previous paper we only required stability with respect to perturbations in the disc plane, while it turns out that for discs with relative mass >0.23 the perturbations in perpendicular direction are more dangerous. The discs of the resulting sequence have their inner rims just on, or very close to, circular geodesics marginally stable with respect to either of the perturbations. Redshift from static and Keplerian observers in the disc is computed. The inverted first Morgan-Morgan counter-rotating disc, used in superpositions, has a number of satisfactory physical properties, but it has turned out to have a curvature singularity at the inner rim. However, this is only a consequence of a too steep radial start of density, not present in (inverted) “higher” Morgan-Morgan solutions. Dedicated to Professor Jiří Bičák on the occasion of his 60th birthday.  相似文献   

12.
Kamenshchik  A. Yu.  Vardanyan  T. 《JETP Letters》2020,111(6):306-310

We study the solutions of the Einstein equations in the presence of a thick infinite slab with constant energy density. When there is an isotropy in the plane of the slab, we find an explicit exact solution that matches with the Rindler and Weyl-Levi-Civita spacetimes outside the slab. We also show that there are solutions that can be matched with general anisotropic Kasner spacetime outside the slab. In any case, it is impossible to avoid the presence of the Kasner type singularities in contrast to the well-known case of spherical symmetry, where by matching the internal Schwarzschild solution with the external one, the singularity in the center of coordinates can be eliminated.

  相似文献   

13.
《Physics letters. [Part B]》1988,215(4):663-668
By analysing the fully coupled equations of motion for a U(1) global string with gravity, we show that global string spacetimes are singular. This singularity is not removable (i.e. due to a bad choice or coordinates) but is a physical curvature singularity.  相似文献   

14.
We apply a recent proposal for defining conserved mass in asymptotically de Sitter spacetimes to the class of Taub-Bolt-de Sitter spacetimes. We compute the action, entropy, and conserved mass of these spacetimes, and find that in certain instances the mass and entropy can exceed that of pure de Sitter spacetime, in violation of recent suggestive conjectures to the contrary.  相似文献   

15.
We study the dynamics of the vacuum Bianchi IX model with timelike singularity and compare it with the dynamics of the Bianchi IX model with cosmological singularity. We show that differences in the signs of some terms in the set of equations specifying the dynamics of both spacetimes lead to significant differences in their properties.  相似文献   

16.
Two definitions of the strengthof a singularity in spacetime are described and compared, and the possibility of extending the ideas to stronger singularities, using spacetimes of low differentiability, is explored.  相似文献   

17.
The existence of hypersurfaces of constant mean extrinsic curvature is examined. Using techniques developed by Choquet-Bruhat in her work on related subjects and techniques used by D'Eath in his study of perturbed Robertson-Walker universes, theorems are proved about the existence of slices of constant mean extrinsic curvature for spacetimes in a neighbourhood of the open Robertson-Walker Universes. It is shown in particular that those spacetimes which lie in a neighbourhood of Minkowski space or de-Sitter space admit slices of constant mean extrinsic curvature. By modifying the techniques used to prove these theorems, it is shown that asymptotically simple spacetimes which are close to Minkowski space admit slices of constant mean extrinsic curvature. The behaviour of these slices near null infinity is examined and it is shown that a large family of such hypersurfaces exists, indexed by the BMS supertranslations.  相似文献   

18.
In 3+1 dimensions there are anti-de Sitter quotients which are black holes with toroidal event horizons. By analytic continuation of the Schwarzschild-anti-de Sitter solution (and appropriate identifications) one finds two one parameter families of spacetimes that contain these quotient black holes. One of these families consists of B-metrics (“bubbles of nothing”), the other of black hole spacetimes. All of them have vanishing conserved charges. I. Bengtsson was supported by VR.  相似文献   

19.
We investigate the conformal geometry of spherically symmetric spacetimes in general without specifying the form of the matter distribution. The general conformal Killing symmetry is obtained subject to a number of integrability conditions. Previous results relating to static spacetimes are shown to be a special case of our solution. The general inheriting conformal symmetry vector, which maps fluid flow lines conformally onto fluid flow lines, is generated and the integrability conditions are shown to be satisfied. We show that there exists a hypersurface orthogonal conformal Killing vector in an exact solution of Einstein’s equations for a relativistic fluid which is expanding, accelerating and shearing.  相似文献   

20.
Effective field theories with explicit Lorentz violation are intimately linked to Riemann-Finsler geometry. The quadratic single-fermion restriction of the Standard-Model Extension provides a rich source of pseudo-Riemann-Finsler spacetimes and Riemann-Finsler spaces. An example is presented that is constructed from a 1-form coefficient and has Finsler structure complementary to the Randers structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号