首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A review of the amphiphilic derivatives of chitin, obtained by covalent grafting of hydrophilic and hydrophobic radicals, is given. It is shown that water-soluble alkylated derivatives of chitin and chitosan, as well as surfactant-polyelectrolyte complexes between oppositely charged surfactants, exhibit interfacial activity, forming structured (gel-like) adsorption layers (AL). Gel formation inside AL of chitin derivatives is characterized by means of interfacial dilational rheometry.  相似文献   

2.
Molecular characteristics of polyelectrolyte complexes of the ultrahigh-molecular-weight poly-(N,N-dimethyl-N-benzyl-N-methacryloyloxyethyl)ammonium chloride with oppositely charged surfactants in chloroform were studied by centrifugal sedimentation and viscometry. The effect of oil-soluble surfactants on the hydrodynamic properties of the complexes was examined.  相似文献   

3.
The combination of two oppositely charged polyelectrolytes results in polyelectrolyte complexes. The simultaneous interfacial reaction between the different polyions leads to formation of polyelectrolyte complex membranes. Some of these have a very good performance in the membrane process pervaporation, especially for dehydration of organic liquids. The combination of a polyelectrolyte with an ionic surfactant of opposite charge results like-wise membranes but with other separation properties. The differences between the two types of membranes, formed from cellulosesulfate in combination with cationic polyelectrolytes or cationic surfactants, will be discussed.  相似文献   

4.
We investigate the competition between the associations of oppositely charged protein-surfactant complexes and oppositely charged surfactant complexes. In all systems examined, the most favorable complexation is the one between the two oppositely charged surfactant ions, despite the strong binding known, for example, dodecyl sulfate, DS-, to lysozyme. Thus, the phase behavior of the catanionic system is dominating the features observed also in the presence of protein. The phase behavior of the dilute protein-free dodecyltrimethylammonium chloride-sodium dodecyl sulfate-water system is presented and used as a basis for the discussion on the different solubilization mechanisms. Our results show that the mechanism for resolubilization of a protein-surfactant salt is fundamentally different when it is caused by addition of a second surfactant than when it is accomplished by an excess of the first surfactant. The competition between lysozyme and cationic amphiphiles as hosts for the anionic surfactants was studied experimentally and analyzed quantitatively. Aggregates with C12 cationic surfactants are clearly preferred by the anionic surfactants, while for C10 and particularly C8 a clear excess of cationic surfactant has to be added to completely dissolve the complex salt lysozyme-anionic surfactant.  相似文献   

5.
Slightly cross-linked polyelectrolytes absorb oppositely charged surfactants in aqueous media. Transfer of amphiphilic ions from solution into the swollen network proceeds as a frontal heterogeneous cooperative reaction causing a collapse of the original polyelectrolyte gel. Small and wide angle X-ray diffraction data show that electrostatic complex formed as a result of the reaction consists of lamellar type surfactant micelles embedded in a polyelectrolyte network. It is also shown that such complexes contain equimolar amount of surfactant ions and ionized polyelectrolyte units paired with amphiphil head groups. In other words a charged network is not able to bind surplus oppositely charged surfactant ions. However, it is still able to solubilize a substantial amount of a nonionized surfactant. Chemical structure of surfactants strongly affect internal structure of lamellae and stability of the complexes.  相似文献   

6.
In this report, we investigate the nanoparticle formation between random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) and oppositely charged natural surfactants, sodium oleate and sodium laurate, using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Though sodium oleate and sodium laurate are sparingly soluble in water, the nanoparticle complexes formed between the RCPs and these surfactants are soluble in the entire range of compositions studied here, including the stoichiometric electronetural complexes. The spherical nature of these nanoparticle complexes is revealed by electron microscopic (EM) analysis. Dynamic light scattering (DLS) showed that the average diameters of the nanoparticles are in the range 50 to 150 nm, which is supported by EM analysis. Pyrene fluorescence experiments suggested that these soluble nanoparticles have hydrophobic cores, which may solubilize hydrophobic drug molecules. The polarity index (I(1)/I(3)) obtained from the pyrene fluorescence spectra and the conductometric measurements showed that the critical concentration of fatty acid salts needed to obtain nanoparticles are in the order of 10(-4) M. Further, the complexation of such poorly water-soluble amphiphilic surfactants with polymers offers a useful method for the immobilization of hydrophobic compounds towards water-soluble drug carrier formulations. The formation of water-soluble nanoparticles by the self-assembly of fatty acid salts upon interacting with oppositely charged poly(ethylene glycol)-based polyions.  相似文献   

7.
The complexes formed between the positively charged random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) with oppositely charged biosurfactants (bile salts) were studied using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Studies showed that the complexes of the RCPs of MAPTAC and MePEGMA with less than 68 mol % of PEG content precipitate in water, whereas the complexes of the copolymer with 89 and 94 mol % of PEG content do not precipitate in the entire range of composition of the mixture including stoichiometric compositions when the electroneutral complexes are formed. The complexes with true hydrophobic domains, which are a prerequisite characteristic to serve as a carrier, can be obtained at much lower concentration than the critical micelle concentration of the corresponding surfactant. For a particular surfactant, hydrophobic domains are obtained at lower Z-/+ for the random copolymer with lower PEG content. The hydrodynamic radii of these complexes vary over a range of 20-35 nm. Overall results reveal that these complexes are qualitatively similar to the polyion complex micelles or block ionomer complexes obtained from the block copolymers and oppositely charged surfactants. As the surfactants used in this study are biocompatible, we hope that these soluble particles will be promising vectors in the field of drug delivery.  相似文献   

8.
水溶性聚电解质—表面活性剂复合物的聚集行为   总被引:4,自引:1,他引:4  
聚电解质在溶液中与相反电荷的表面活性剂通过解电作用与疏水作用可形成聚电解质-表面活性剂复合物,依据反应条件生成的复事物可以是水溶性也可以是非水溶性的。水溶性的聚电解质-表面活性剂复合物由于有许多工业应用,因此近几十上来水溶性聚电解质-表面活性剂复合物的形成和结构已爱到人们的广泛重视。本文对水溶性聚电解质-表面活性剂复合物的聚集过程、聚集结构作了简要概述,此外对荧光光谱在这一领域的应用进行了重点介绍  相似文献   

9.
疏水缔合共聚物与表面活性剂的界面相互作用   总被引:1,自引:0,他引:1  
采用界面张力弛豫法研究了疏水缔合聚合物聚丙烯酰胺/2-乙基己基丙烯酸酯[P(AM/2-EHA)]在正辛烷-水界面上的扩张粘弹性质, 考察了不同类型表面活性剂十二烷基硫酸钠(SDS)、聚环氧乙烯醚(Tx-100)和十六烷基三甲基溴化铵(CTAB)对其界面扩张性质的影响. 研究发现, 界面上的表面活性剂分子可以与聚合物的疏水嵌段形成类似混合胶束的聚集体, 表面活性剂分子与聚集体之间存在快速交换. 这种弛豫过程的特征时间远比分子在体相与界面间的扩散交换时短. 当界面面积增大时, 上述混合胶束中的表面活性剂分子能快速释放, 在界面层内原位快速消除界面张力梯度, 从而大大降低界面扩张弹性. 界面上的CTAB分子与聚合物链节上的负电中心通过较强的电荷吸引作用形成复合物. 当界面面积增大时, 上述混合胶束中的CTAB分子释放较慢, 界面张力梯度较大. 非离子表面活性剂Tx-100分子量较大, 扩散速率较慢, 它在界面上与聚集体间的交换比阴离子表面活性剂SDS慢, 其特征时间约为0.9 s.  相似文献   

10.
Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged surfactants, and k(c) is further reduced in anionic/cationic surfactant mixtures where the surfactant in excess has the smaller tail volume. Likewise, the reduction of k(c) is enhanced in mixtures of an ionic and a nonionic surfactant where the ionic surfactant has the smaller tail. The effective bilayer bending constant (k(bi)) is also found to be reduced by mixing, and as a result, k(bi) is seen to go through a minimum at some intermediate composition. The reduction of k(bi) is expected to be most pronounced in mixtures of two oppositely charged surfactants where the surfactant in excess has the smaller tail in agreement with experimental observations.  相似文献   

11.
The reactions of complex gels formed via the sorption of a poly(propylenimine) ampholyte dendrimer of the fourth generation by oppositely charged lightly cross-linked polyelectrolyte hydrogels with ionogenic micelle-forming surfactants have been studied. The sorption of surfactant ions likely charged relative to the complexed ampholyte dendrimer by complex gels is associated with two parallel chemical reactions controlled by the concentration of the surfactant and pH which give rise to the formation of network-dendrimer-surfactant tertiary complexes. The reactions of complex gels with surfactant ions likely charged relative to the network polyelectrolyte make it possible at different solution pHs to prepare both negatively and positively charged hydrogels reinforced by disperse particles of the dendrimer-surfactant complex.  相似文献   

12.
The effect of phase transitions in the solutions of the complexes of surfactants and oppositely charged polyelectrolytes of different chemical natures on the molecular mobility of the surfactant ions inside the intracomplex micelles was studied by the spin probe method. It was found that, irrespective of the fact whether the solutions of the polyelectrolyte–surfactant complexes are true solutions, colloidal dispersions, or thixotropic gels, the molecular mobility of the surfactant ions inside the complex micelles and, consequently, the local structure of the intracomplex micelles, remain unchanged upon both a change in the complex composition and transition of complexes from solution to the precipitate.  相似文献   

13.
Formation and structure of water-soluble complexes of poly(acrylic acid) (PA) and poly(diallyldimethylammonium chloride) (PDADMAC) with oppositely charged surfactants have been studied by elastic and quasi-elastic laser light-scattering and high-speed sedimentation technique. It was experimentally shown that generation of intracomplex micellar phase is the necessary condition for formation of such complexes. Minimum aggregation number of the surfactant ions in the complex micelle was found to be determined by the chemical nature of the polymer.  相似文献   

14.
We report the presence of a correlation between the bulk and interfacial properties of electrostatic coacervate complexes. Complexes were obtained by co-assembly between cationic-neutral diblocks and oppositely charged surfactant micelles or 7 nm cerium oxide nanoparticles. Light scattering and reflectometry measurements revealed that the hybrid nanoparticle aggregates were more stable through both dilution and rinsing (from either a polystyrene or a silica surface) than their surfactant counterparts. These findings were attributed to a marked difference in critical association concentration between the two systems and to the frozen state of the hybrid structures.  相似文献   

15.
The binding of two model surfactants, sodium dodecyl sulfate and dodecyltrimethylammonium bromide to β-lactoglobulin was studied at room temperature and the thermal stability of the resulting complexes was evaluated by differential scanning calorimetry (DSC) measurements. Binding isotherms indicated both ionic and hydrophobic interactions depending on both the charge of the protein and surfactant at different pHs and on the binding molar ratios of surfactant to the globular protein. Zeta potential measurements indicated charge neutralisation of the protein, under suitable conditions, which also lead to aggregation and precipitation of the proteins. Surface tension measurements indicated similarity between the two types of oppositely charged protein-surfactant complexes and a difference between them when protein and surfactants are similarly charged. DSC measurements revealed different behavior in protein conformation in the presence of the two surfactants. The results obtained at room temperature and upon heating are discussed in terms of the nature of the surfactant/protein interactions involved in the complex formation.  相似文献   

16.
The aim of this study was to add to the range of charged surfactants that can be used to form catanionic aggregates with oppositely charged surface active drug substances; and to apply these aggregates to prolong drug release from gels. The surfactants used in this study, lauric and capric acids are of natural origin-unlike traditionally used, synthetic, surfactants. The mixtures of drug substances and oppositely charged surfactants were studied visually and with cryogenic transmission electron microscopy. Drug release from gels was studied with a modified USP paddle method. This study shows that lauric and capric acids are as, or even more, active in forming catanionic aggregates than traditionally used surfactants such as sodium dodecyl sulfate. It is shown that the length of the hydrophobic part of the surfactant plays an important role in the formation of pharmaceutically interesting catanionic aggregates. As seen in previous studies, using catanionic vesicles prolongs the drug release from gels and decreases the apparent diffusion coefficient by a factor of 10-50, compared to a gel containing only drug substance.  相似文献   

17.
18.
The volume and structural changes upon replacement of oppositely charged network counterions for oppositely charged macroions in cross-linked polyelectrolyte gels have been investigated by Monte Carlo simulations using a coarse-grained model. Initially, the gel deswells, but after an approximately equivalent amount of macroions, the gel starts to swell again. The deswelling effect is greatest for small and highly charged macroions. The role of different network properties on the deswelling has also been examined. The initial deswelling is understood in terms of a replacement of confined counterions with macroions, thereby reducing the osmotic pressure originating from the counterions. At these conditions, macroions are located near network nodes with various degrees of network chains wrapping them. At charge equivalence, a profound change in the network structure has appeared. At these conditions, the cohesive electrostatic interaction and the excluded volume effect of the macroions strongly influence the equilibrium volume of the gel. Our model system reproduces many characteristic experimental observations of polyelectrolyte gels containing oppositely charged surfactants.  相似文献   

19.
We have investigated the activity of counter-ions at 60 degrees C through the osmotic coefficient K in solutions of anionic and cationic polyelectrolyte complexes of variable compositions. For excess of polyanion in the complexes (molar fraction of polycation f < 0.5), K increases as the polyanion is neutralized by the polycation (f getting closer to 0.5). By contrast, for an excess of polycation (f > 0.5), K stays constant or even slightly decreases as the polycation is getting neutralized by the polyanion. This asymmetric behavior depending on the charge of the complexes indicates that the globally negatively charged complexes are homogeneous and can be treated as a single polyelectrolyte of reduced linear charge density. On the other hand, the positively charged complexes show a micro-phase separation between neutral fully compensated microdomains and domains where the excess polycation is locally segregated. These two different microstructures are reminiscent of the coacervation and segregation regimes observed at higher concentrations and salinities, and also of polyelectrolyte complexes with oppositely charged surfactants. This interpretation is supported by two simple predictive models.  相似文献   

20.
We describe the results of theoretical and experimental studies of the regular heterogeneities on a nanometer scale which are formed in the systems containing weakly charged polyelectrolytes due to the competition of ionic and hydrophobic interactions. In particular, we consider the effect of microphase separation in poor solvent polyelectrolyte solutions and gels and nano-self-assemblies emerging in the complexes of polyelectrolyte gels with oppositely charged surfactants. The practically important application connected with metal nanoparticles formation in regular microstructures in polyelectrolyte systems is considered as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号