首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To improve our understanding of how dolphins use acoustic signals in the wild, a three-hydrophone towed array was used to investigate the spatial occurrence of Hawaiian spinner dolphins (Stenella longirostris) relative to each other as they produced whistles, burst pulses, and echolocation clicks. Groups of approximately 30 to 60 animals were recorded while they traveled and socialized in nearshore waters off Oahu, Hawaii. Signaling animals were localized using time of arrival difference cues on the three channels. Sequences of whistles occurred between dolphins separated by significantly greater distances than animals producing burst pulses. Whistles typically originated from dolphins spaced widely apart (median = 23 m), supporting the hypothesis that whistles play a role in maintaining contact between animals in a dispersed group. Burst pulses, on the other hand, usually came from animals spaced closer to one another (median = 14 m), suggesting they function as a more intimate form of signaling between adjacent individuals. The spacing between echolocating animals was more variable and exhibited a bimodal distribution. Three quarters of echolocating animals were separated by 10 m or more, suggesting that the task of vigilance in a pod may not be shared equally by all members at all times.  相似文献   

2.
Geographic variations in the whistles of Hawai'ian spinner dolphins are discussed by comparing 27 spinner dolphin pods recorded in waters off the Islands of Kaua'i, O'ahu, Lana'i, and Hawai'i. Three different behavioral states, the number of dolphins observed in each pod, and ten parameters extracted from each whistle contour were considered by using clustering and discriminant function analyses. The results suggest that spinner dolphin pods in the Main Hawai'ian Islands share characteristics in approximately 48% of their whistles. Spinner dolphin pods had similar whistle parameters regardless of the island, location, and date when they were sampled and the dolphins' behavioral state and pod size. The term "whistle-specific subgroup" (WSS) was used to designate whistle groups with similar whistles parameters (which could have been produced in part by the same dolphins). The emission rate of whistles was higher when spinner dolphins were socializing than when they were traveling or resting, suggesting that whistles are mainly used during close-range interactions. Spinner dolphins also seem to vary whistle duration according to their general behavioral state. Whistle duration and the number of turns and steps of a whistle may be more important in delivering information at the individual level than whistle frequency parameters.  相似文献   

3.
Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (<20 kHz) analyses. To explore the occurrence of communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.  相似文献   

4.
Recordings of white-beaked dolphin whistles were made in Faxafl6i Bay (Iceland) using a three-hydrophone towed linear array. Signals from the hydrophones were routed through an amplifier to a lunch box computer on board the boat and digitized using a sample rate of 125 kHz per channel. Using this method more than 5000 whistles were recorded. All recordings were made in sea states 0-1 (Beaufort scale). Dolphins were located in a 2D horizontal plane by using the difference of arrival time to the three hydrophones, and source levels were estimated from these positions using two different methods (I and II). Forty-three whistles gave a reliable location for the vocalizing dolphin when using method II and of these 12 when using method I. Source level estimates on the center hydrophone were higher using method I [average source level 148 (rms) +/- 12 dB, n = 36] than for method II [average source level 139 (rms) +/- 12 dB, n = 36]. Using these rms values the maximum possible communication range for whistling dolphins given the local ambient noise conditions was then estimated. The maximum range was 10.5 km for a dolphin whistle with the highest source level (167 dB) and about 140 m for a whistle with the lowest source level (118 dB). Only two of the 43 whistles contained an unequal number of harmonics recorded at the three hydrophones judging from the spectrograms. Such signals could be used to calculate the directionality of whistles, but more recordings are necessary to describe the directionality of white-beaked dolphin whistles.  相似文献   

5.
Broadband simulated dolphin echolocation signals were used to measure the ex situ backscatter properties of mesopelagic boundary community (MBC) in order to gain a better understanding of the echolocation process of spinner dolphins foraging on the MBC. Subjects were captured by trawling with a 2-m-opening Isaacs-Kidd Midwater Trawl. Backscatter measurements were conducted on the ship in a 2000 L seawater tank with the transducer placed on the bottom pointed upwards. Backscatter measurements were obtained in both the dorsal and lateral aspects for seven myctophids and only in the dorsal aspect for 16 more myctophids, six shrimps, and three squids. The echoes from the myctophids and shrimps usually had two highlights, one from the surface of the animal nearest the transducer and a second probably from the signal propagating through body of the subject and reflecting off the opposite surface of the animal. The squid echoes consisted mainly of a single highlight but sometimes had a low amplitude secondary highlight. The backscatter results were used to estimate the echolocation detection range for spinner dolphins foraging on the mesopelagic boundary community. The results were also compared with multi-frequency volume backscatter of the mesopelagic boundary community sound scattering layer.  相似文献   

6.
A series of quali- and quantitative analyses were conducted to evaluate the variability of spinner dolphin whistles from the Fernando de Noronha Archipelago off Brazil. Nine variables were extracted from each whistle contour, and the whistle contours shapes were classified into the seven categories described in Driscoll (1995). The analysis showed mean beginning and ending frequencies values of 10.78 and 12.74 kHz, respectively. On average, whistle duration was relatively short, with mean values around 0.495 s (N=702). Comparative analyses were also conducted to investigate the relationship between the obtained results and those presented in previous studies. When comparing averages, the results of the study of Oswald et al.(2003) in the Tropical Eastern Pacific (TEP) presented less significant differences in relation to this study; only whistle duration differed significantly between both works. The results of multivariate classification tests also pointed TEP population as the closest related to the population studied here. The similarities between such disjunct populations might be attributed to a more recent isolation event (the closing of the Panama Isthmus) than the divergence that has driven North and South Atlantic populations apart.  相似文献   

7.
This paper presents a cross-sectional study testing whether dolphins that are born in aquarium pools where they hear trainers' whistles develop whistles that are less frequency modulated than those of wild dolphins. Ten pairs of captive and wild dolphins were matched for age and sex. Twenty whistles were sampled from each dolphin. Several traditional acoustic features (total duration, duration minus any silent periods, etc.) were measured for each whistle, in addition to newly defined flatness parameters: total flatness ratio (percentage of whistle scored as unmodulated), and contiguous flatness ratio (duration of longest flat segment divided by total duration). The durations of wild dolphin whistles were found to be significantly longer, and the captive dolphins had whistles that were less frequency modulated and more like the trainers' whistles. Using a standard t-test, the captive dolphin had a significantly higher total flatness ratio in 9/10 matched pairs, and in 8/10 pairs the captive dolphin had significantly higher contiguous flatness ratios. These results suggest that captive-born dolphins can incorporate features of artificial acoustic models made by humans into their signature whistles.  相似文献   

8.
There is no information about the whistles of rough-toothed dolphins in the South Atlantic Ocean. This study characterizes the whistle structure of free-ranging rough-toothed dolphins recorded on the Rio de Janeiro coast, southeastern Brazil, and compares it to that of the same species in other regions. A total of 340 whistles were analyzed. Constant (N = 115; 33.8%) and ascending (N = 99; 29.1%) whistles were the most common contours. The whistles recorded had their fundamental frequencies between 2.24 and 13.94 kHz. Whistles without inflection points were frequently emitted (N = 255; 75%). Some signals presented breaks or steps in their contour (N = 97; 28.5%). Whistle duration was short (347 ± 236 ms and 89.7% of the whistles lasted <600 ms). Seventy-eight whistle contour types were found in the total of whistles analyzed, and 27 (7.9%) of these occurred only once. Most of the whistle types were unique to a particular recording session (N = 43). The signals emitted by the rough-toothed dolphins in southeastern Brazil were characterized by low frequency modulation, short duration, low number of inflection points, and breaks. Differences in the mean values of the whistle parameters were found between this and other studies that recorded Steno bredanensis, but as in other localities, whistles above 14 kHz are rare.  相似文献   

9.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

10.
H. Hollfelder 《Ultrasonics》1967,5(4):250-251
High energy sound is finding ever increasing applications in chemical engineering, for such processes as drying, dust separation, and atomization of solutions. Air transducers are particularly suited to the production of sound for such work, but the range of efficiency of these generators is only 2–5%.  相似文献   

11.
Acoustic characteristics of chamfered Hartmann whistles   总被引:1,自引:0,他引:1  
Experimental studies are conducted to investigate the effect of internal chamfer at the mouth of Hartmann resonators. Studies involve a range of nozzle pressure ratios from 4 to 6, and chamfer angles 15°, 30°, and 45°. Further, the effects of cavity length and stand-off distance are also considered. The spectra, directivity, and acoustic power characteristics are studied in detail. Detailed numerical simulations are carried out to capture the flow oscillations inside as well as at the outside of the mouth of the chamfered cavities. Computations show flow diversion in chamfered cavities and explain the shift in the directivity observed experimentally. The fundamental frequency of cavities with 15° and 30° chamfers is observed to be higher than that of regular cavities. Resonance is intensified by the presence of chamfer resulting in higher overall sound pressure levels of chamfered whistles. Thus, chamfered Hartmann whistles are found to emit more than twice the acoustic power of a regular cylindrical whistle. The tonal quality of sound is analyzed using a new metric termed as “resonance index”.  相似文献   

12.
Because whistles are most commonly associated with social delphinids, they have been largely overlooked, ignored, or presumed absent, in solitary freshwater dolphin species. Whistle production in the freshwater dolphin, the boto (Inia geoffrensis geoffrensis), has been controversial. Because of its sympatry with tucuxi dolphins (Sotalia fluviatilis), a whistling species, some presume tucuxi whistles might have been erroneously assigned to the boto. Using a broadband recording system, we recorded over 100 whistles from boto dolphins in the Yasunf River, Ecuador, where the tucuxi dolphins are absent. Our results therefore provide conclusive evidence for whistle production in Inia geoffrensis geoffrensis. Furthermore, boto whistles are significantly different from tucuxi whistles recorded in nearby rivers. The Ecuadorian boto whistle has a significantly greater frequency range (5.30-48.10 kHz) than previously reported in other populations (Peru and Colombia) that were recorded with more bandwidth limited equipment. In addition, the top frequency and the range are greater than in any other toothed whale species recorded to date. Whistle production was higher during resting activities, alone or in the presence of other animals. The confirmation of whistles in the boto has important implications for the evolution of whistles in Cetacea and their association with sociality.  相似文献   

13.
14.
15.
Most of our understanding of dolphin echolocation has come from studies of captive dolphins performing various echolocation tasks. Recently, measurements of echolocation signals in the wild have expanded our understanding of the characteristics of these signals in a natural setting. Measuring undistorted dolphin echolocation signals with free swimming dolphins in the field can be a challenging task. A four hydrophone array arranged in a symmetrical star pattern was used to measure the echolocation signals of four species of dolphins in the wild. Echolocation signals of the following dolphins have been measured with the symmetrical star array: white-beaked dolphins in Iceland, Atlantic spotted dolphins in the Bahamas, killer whales in British Columbia, and dusky dolphins in New Zealand. There are many common features in the echolocation signals of the different species. Most of the signals had spectra that were bimodal: two peaks, one at low frequencies and another about an octave higher in frequency. The source level of the sonar transmission varies as a function of 20logR, suggesting a form of time-varying gain but on the transmitting end of the sonar process rather than the receiving end. The results of the field work call into question the issue of whether the signals used by captive dolphins may be shaped by the task they are required to perform rather than what they would do more naturally.  相似文献   

16.
This study reports that killer whales, the largest dolphin, produce whistles with the highest fundamental frequencies ever reported in a delphinid. Using wide-band acoustic sampling from both animal-attached (Dtag) and remotely deployed hydrophone arrays, ultrasonic whistles were detected in three Northeast Atlantic populations but not in two Northeast Pacific populations. These results are inconsistent with analyses suggesting a correlation of maximum frequency of whistles with body size in delphinids, indicate substantial intraspecific variation in whistle production in killer whales, and highlight the importance of appropriate acoustic sampling techniques when conducting comparative analyses of sound repertoires.  相似文献   

17.
The ability to identify delphinid vocalizations to species in real-time would be an asset during shipboard surveys. An automated system, Real-time Odontocete Call Classification Algorithm (ROCCA), is being developed to allow real-time acoustic species identification in the field. This Matlab-based tool automatically extracts ten variables (beginning, end, minimum and maximum frequencies, duration, slope of the beginning and end sweep, number of inflection points, number of steps, and presence/absence of harmonics) from whistles selected from a real-time scrolling spectrograph (ISHMAEL). It uses classification and regression tree analysis (CART) and discriminant function analysis (DFA) to identify whistles to species. Schools are classified based on running tallies of individual whistle classifications. Overall, 46% of schools were correctly classified for seven species and one genus (Tursiops truncatus, Stenella attenuata, S. longirostris, S. coeruleoalba, Steno bredanensis, Delphinus species, Pseudorca crassidens, and Globicephala macrorhynchus), with correct classification as high as 80% for some species. If classification success can be increased, this tool will provide a method for identifying schools that are difficult to approach and observe, will allow species distribution data to be collected when visual efforts are compromised, and will reduce the time necessary for post-cruise data analysis.  相似文献   

18.
19.
Whistles from five delphinid species in the western Mediterranean Sea (Stenella coeruleoalba, Grampus griseus, Delphinus delphis, Tursiops truncatus, Globicephala melas) were taken from GREC sound archives. FFT contours (window size 512, Hanning, sampling frequency 44.1 kHz) were extracted with custom developed Matlab software: 277 samples of striped dolphins (Sc), 158 whistles of Risso’s dolphins (Gg), 120 of common dolphins (Dd), 76 of bottlenose dolphins (Tt), and 66 of pilot whales (Gm) were selected. Seafox software extracted 15 variables from the digitized contours, including: duration, initial, final, maximal and minimal frequency slopes, frequency range, number of frequency extrema, beginning, ending, maximal and minimal frequencies, presence of harmonics. Four of five species were significantly different (Mann-Whitney test) for average durations (respectively 0.73, 0.65, 0.47 and 0.89 s for Sc, Gg, Dd, Gm) while the average duration of bottlenose dolphins was 0.71 s. Frequency ranges (respectively 7.3, 6.3, 4.6, 3.2 and 6.3 kHz) were significantly different for all species pairs, with the exception of bottlenose and Risso’s dolphins. From a global point of view, pilot whale calls were the most distinct, with 43 significant pair-wise tests out of a total of 52, followed by the common dolphins. Risso’s dolphins were closest to other species whistles. A CART classification method achieved a global classification rate of 62.9%.  相似文献   

20.
A novel cylindrical magic-angle spinner for use in electromagnet systems is described. It features radial and thrust air bearings and easily constructed rotors of relatively large sample volume (∼0.7 cm3) assembled into a removable spinner/coil Teflon housing. The design allows stable spinning speeds in the range 0.3 to 2.4 kHz with excellent rotor-to-rotor magic-angle resettabilities. High resolution, solid-state NMR studies are illustrated with 13C NMR spectra for crystalline adamantane and a macromolecule, lysozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号