首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈明  何攀  周仕明  时钟 《中国物理 B》2014,23(1):17104-017104
The anomalous Hall effect in disordered face-centered cubic(fcc) FePt alloy films is experimentally studied. The longitudinal resistivity independent term of the anomalous Hall conductivity(AHC) increases and approaches saturation with increasing film thickness. The contribution of side jump scattering is suggested to decrease monotonically with increasing film thickness, which can be ascribed to the variation of the surface scattering with the film thickness. The sign of the skew scattering contribution to the AHC is opposite to that of the intrinsic contribution in the system.  相似文献   

2.
Quantum Hall effect (QHE), as a class of quantum phenomena that occur in macroscopic scale, is one of the most important topics in condensed matter physics. It has long been expected that QHE may occur without Landau levels so that neither external magnetic field nor high sample mobility is required for its study and application, Such a QHE free of Landau levels, can appear in topological insulators (TIs) with ferromagnetism as the quantized version of the anomalous Hall effect, i.e., quantum anomalous Hall (QAH) effect. Here we review our recent work on experimental realization of the QAH effect in magnetically doped TIs. With molecular beam epitaxy, we prepare thin films of Cr-doped (Bi,Sb)2Te3 TIs with well- controlled chemical potential and long-range ferromagnetic order that can survive the insulating phase. In such thin films, we eventually observed the quantization of the Hall resistance at h/e2 at zero field, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect provides a foundation for many other novel quantum phenomena predicted in TIs, and opens a route to practical applications of quantum Hall physics in low-power-consumption electronics.  相似文献   

3.
Yuan Gao 《中国物理 B》2022,31(10):107304-107304
Based on first-principles calculations, a two-dimensional (2D) van der Waals (vdW) bilayer heterostructure consisting of two topologically trivial ferromagnetic (FM) monolayers CrI3 and ScCl2 is proposed to realize the quantum anomalous Hall effect (QAHE) with a sizable topologically nontrivial band gap of 4.5 meV. Its topological nature is attributed to an interlayer band inversion between the monolayers and critically depends on the symmetry of the stacking configuration. We further demonstrate that the topologically nontrivial band gap can be increased nearly linearly by the application of a perpendicular external pressure and reaches 8.1 meV at 2.7 GPa, and the application of an external out-of-plane electric field can also modulate the band gap and convert the system back to topologically trivial via eliminating the band inversion. An effective model is developed to describe the topological phase evolution in this bilayer heterostructure. This work provides a new candidate system based on 2D vdW materials for realization of potential high-temperature QAHE with considerable controllability.  相似文献   

4.
丁进军  吴少兵  杨晓非  朱涛 《中国物理 B》2015,24(2):27201-027201
An obvious weak localization correction to anomalous Hall conductance(AHC) in very thin CoFeB film is reported.We find that both the weak localization to AHC and the mechanism of the anomalous Hall effect are related to the CoFeB thickness.When the film is thicker than 3 nm,the side jump mechanism dominates and the weak locaUzation to AHC vanishes.For very thin CoFeB films,both the side jump and skew scattering mechanisms contribute to the anomalous Hall effect,and the weak localization correction to AHC is observed.  相似文献   

5.
余睿  张薇  翁红明  戴希  方忠 《物理》2010,39(09):618-623
文章从平常霍尔效应出发,介绍了反常霍尔效应及其内秉物理机制,并在此基础上介绍了其量子化版本——量子化反常霍尔效应.然后从拓扑有序态的角度,重点讨论了量子化反常霍尔效应与量子霍尔效应、量子自旋霍尔效应、拓扑绝缘体等之间的区别与内在联系.最后介绍了通过在拓扑绝缘体(Bi2Se3, Bi2Te3 和 Sb2Te3)薄膜中掺杂过渡金属元素(Cr 或 Fe)实现量子化反常霍尔效应的方法.  相似文献   

6.
张加永  赵宝  周通  杨中芹 《中国物理 B》2016,25(11):117308-117308
Under a strong magnetic field,the quantum Hall(QH) effect can be observed in two-dimensional electronic gas systems.If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field,then it will give rise to a new quantum state,the quantum anomalous Hall(QAH) state.The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics.The realization of the QAH effect in real materials is of great significance.In this paper,we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures,including magnetically doped topological insulators,graphene-based systems,silicene-based systems,two-dimensional organometallic frameworks,quantum wells,and functionalized Sb(111) monolayers,etc.Our paper can help our readers to quickly grasp the recent developments in this field.  相似文献   

7.
Yezhu Lv 《中国物理 B》2022,31(12):127303-127303
Quantum anomalous Hall effect (QAHE) is an innovative topological spintronic phenomenon with dissipationless chiral edge states and attracts rapidly increasing attention. However, it has only been observed in few materials in experiments. Here, according to the first-principles calculations, we report that the MXene MoYN$_{2}$CSCl shows a topologically nontrivial band gap of 37.3~meV, possessing QAHE with a Chern number of $C = 1$, which is induced by band inversion between $ {\rm d}_{xz}$ and ${\rm d}_{yz}$ orbitals. Also, the topological phase transition for the MoYN$_{2}$CSCl can be realized via strain or by turning the magnetization direction. Remarkably, MoYN$_{2}$CSCl shows the nodal-line semimetal state dependent on the electron correlation $U$. Our findings add an experimentally accessible and tunable member to the QAHE family, which stands a chance of enriching the applications in spintronics.  相似文献   

8.
The role of bulk and edge currents in a two-dimensional electron gas under the conditions of the integer quantum Hall effect (IQHE) was studied by means of an inductive coupling to Hall bar geometry. From this study we conclude that the extended states at the bulk of the sample below the Fermi energy are capable of carrying a substantial amount of Hall current. For Hall bar geometry sample with a back gate we demonstrated that injected current can be pushed from one edge to another by reversing the direction of the external magnetic field.  相似文献   

9.
10.
异常霍尔效应和自旋霍尔效应   总被引:2,自引:0,他引:2  
异常霍尔效应和自旋霍尔效应是在常规霍尔效应的基础上引发出的2种新现象.本文介绍了这2种现象及其原理和潜在的应用.  相似文献   

11.
The well-known quantum Hall effect (QHE) was usually studied in 2D systems. In this work, we investigate the integer QHE in 3D Weyl and double-Weyl semimetals. Based on the lattice models of Weyl and double-Weyl semimetals subjected to a uniform magnetic field, we derive the generalized 3D spinfull Hofstadter Hamiltonians and Harper equations for the two systems, and obtain their corresponding energy spectra. Furthermore, we show that for proper hopping parameters and rational magnetic fluxes, both systems exhibit the 3D QHE when the Fermi level lies in some band gaps. The 3D QHE is topologically characterized by three Chern numbers with one or two nonzero Chern values which are respectively defined for three crystal planes. The possible experimental realization and detection of the 3D QHE are also discussed.  相似文献   

12.
Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in condensed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2Te3 but at an extremely low observational temperature, thereby limiting its potential application in dissipationless quantum electronics. By employing first-principles calculations, we study the electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a compensated np co-doping scheme. Our findings are as follows: i) The electrostatic attraction between the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their undesirable clustering. ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferromagnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba splitting energies in Re–B and Pt–B co-doped graphene systems can reach up to 158 and 85 meV, respectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling strength.  相似文献   

13.
分数量子霍尔效应系统是奇异的量子液体,其中的准粒子激发可以带分数电荷,甚至具有非阿贝尔的统计性质。理论研究表明,这些准粒子可以用来实现在硬件上可容错的量子计算,即拓扑量子计算。文章在介绍分数量子霍尔效应及其在拓扑量子计算中的潜在应用基础上,重点回顾了近五年来对填充因子为5/2的分数量子霍尔态中非阿贝尔准粒子的实验探测和部分相关理论诠释。  相似文献   

14.
万歆  王正汉  杨昆 《物理》2013,42(08):558-566
分数量子霍尔效应系统是奇异的量子液体,其中的准粒子激发可以带分数电荷,甚至具有非阿贝尔的统计性质。理论研究表明,这些准粒子可以用来实现在硬件上可容错的量子计算,即拓扑量子计算。文章在介绍分数量子霍尔效应及其在拓扑量子计算中的潜在应用基础上,重点回顾了近五年来对填充因子为5/2的分数量子霍尔态中非阿贝尔准粒子的实验探测和部分相关理论诠释。  相似文献   

15.
量子霍尔效应   总被引:7,自引:1,他引:6  
从经典的霍尔效应开始,比较系统地、深入浅出地介绍了量子霍尔效应及其所涉及的一些新概念和实际应用。  相似文献   

16.
We have realized robust quantum anomalous Hall samples by protecting Cr-doped(Bi,Sb)_2Te_3 topological insulator films with a combination of LiF and A1O_x capping layers.The AlO_x/LiF composite capping layer well keeps the quantum anomalous Hall states of Cr-doped(Bi,Sb)_2Te_3 films and effectively prevent them from degradation induced by ambient conditions.The progress is a key step towards the realization of the quantum phenomena in heterostructures and devices based on quantum anomalous Hall system.  相似文献   

17.
The quantum spin Hall effect(QSHE) was first realized in HgTe quantum wells(QWs),which remain the only known two-dimensional topological insulator so far.In this paper,we have systematically studied the effect of the thickness fluctuation of HgTe QWs on the QSHE.We start with the case of constant mass with random distributions,and reveal that the disordered system can be well described by a virtual uniform QW with an effective mass when the number of components is small.When the number is infinite and corresponds to the real fluctuation,we find that the QSHE is not only robust,but also can be generated by relatively strong fluctuation.Our results imply that the thickness fluctuation does not cause backscattering,and the QSHE is robust to it.  相似文献   

18.
刘娜  王海  朱涛 《物理学报》2012,61(16):167504-167504
具有垂直磁各向异性的磁性纳米结构是自旋转移力矩器件的重要研究内容, 本文采用反常霍尔效应系统地研究了磁控溅射法制备的[CoFeB/Pt]n多层膜的垂直磁各向异性. 当CoFeB的厚度小于0.6 nm时, 可以在[CoFeB/Pt]n多层膜中观察到清晰的垂直磁各向异性, 其垂直磁各向异性强烈依赖于CoFeB和Pt层厚度及多层膜周期数. 当多层膜周期数n ≥ 5时, 出现零剩磁现象. 另外, [CoFeB/Pt]n多层膜的矫顽力均小于2 kA·m-1, 有望作为垂直自由层的重要侯选材料应用于垂直磁纳米结构中.  相似文献   

19.
梁拥成  张英  郭万林  姚裕贵  方忠 《物理》2007,36(05):385-390
文章介绍了在铁磁性材料中反常霍尔效应的发现及其机制研究的历史;阐述了反常霍尔效应理论研究最近取得的重大进展,即倒空间中布洛赫态的贝里曲率(规范场)特性决定了霍尔电导率;同时指出,建立系统地解释反常霍尔效应机制的理论仍然是一个挑战性的任务.  相似文献   

20.
孙庆丰  谢心澄 《物理》2010,39(06):416-418
文章作者在垂直磁场作用下的铁磁石墨烯体系里预言了一种新类型的量子自旋霍尔效应.这量子自旋霍尔效应与自旋轨道耦合无关,体系也不具有时间反演不变性;但是有CT不变(C为电子-空穴变换、T为时间反演变换).由于量子自旋霍尔效应,体系的纵向电阻和自旋霍尔阻出现量子化平台.特别是,自旋霍尔阻的量子化平台有很强的抗杂质干扰能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号