首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Developing low-cost and high-efficient noble-metal-free cocatalysts has been a challenge to achieve economic hydrogen production. In this work, molybdenum oxides (MoO\begin{document}$_{3-x}$\end{document}) were in situ loaded on polymer carbon nitride (PCN) via a simple one-pot impregnation-calcination approach. Different from post-impregnation method, intimate coupling interface between high-dispersed ultra-small MoO\begin{document}$_{3-x}$\end{document} nanocrystal and PCN was successfully formed during the in situ growth process. The MoO\begin{document}$_{3-x}$\end{document}-PCN-\begin{document}$X$\end{document} (\begin{document}$X$\end{document}=1, 2, 3, 4) photocatalyst without noble platinum (Pt) finally exhibited enhanced photocatalytic hydrogen performance under visible light irradiation (\begin{document}$\lambda$\end{document}\begin{document}$>$\end{document}420 nm), with the highest hydrogen evolution rate of 15.6 μmol/h, which was more than 3 times that of bulk PCN. Detailed structure-performance revealed that such improvement in visible-light hydrogen production activity originated from the intimate interfacial interaction between high-dispersed ultra-small MoO\begin{document}$_{3-x}$\end{document} nanocrystal and polymer carbon nitride as well as efficient charge carriers transfer brought by Schottky junction formed.  相似文献   

2.
Photocatalytic reduction of CO\begin{document}$_2$\end{document} into various types of fuels has attracted great interest, and serves as a potential solution to addressing current global warming and energy challenges. In this work, Ag-Cu nanoparticles are densely supported on N-doped TiO\begin{document}$_2$\end{document} nanowire through a straightforward nanofabrication approach. The range of light absorption by N-doped TiO\begin{document}$_2$\end{document} can be tuned to match the plasmonic band of Ag nanoparticles, which allows synergizing a resonant energy transfer process with the Schottky junction. Meanwhile, Cu nanoparticles can provide active sites for the reduction of CO\begin{document}$_2$\end{document} molecules. Remarkably, the performance of photocatalytic CO\begin{document}$_2$\end{document} reduction is improved to produce CH\begin{document}$_4$\end{document} at a rate of 720 \begin{document}$\mu$\end{document}mol\begin{document}$\cdot$\end{document}g\begin{document}$^{-1}$\end{document}\begin{document}$\cdot$\end{document}h\begin{document}$^{-1}$\end{document} under full-spectrum irradiation.  相似文献   

3.
Distinguished from commonly used Fe\begin{document}$_2$\end{document}O\begin{document}$_3$\end{document} and Fe\begin{document}$_3$\end{document}O\begin{document}$_4$\end{document}, a three-dimensional multilevel macro-micro-mesoporous structure of FeC\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document}/graphene composite has been prepared as binder-free electrode for supercapacitors. The as-prepared materials are composed of macroporous graphene and microporous/mesoporous ferrous oxalate. Generally, the decomposition voltage of water is 1.23 V and the practical voltage window limit is about 2 V for asymmetric supercapacitors in aqueous electrolytes. When FeC\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document}/rGO hydrogel was used as the negative electrode and a pure rGO hydrogel was used as the positive electrode, the asymmetrical supercapacitor voltage window raised to 1.7 V in KOH (1.0 mol/L) electrolyte and reached up to 2.5 V in a neutral aqueous Na\begin{document}$_2$\end{document}SO\begin{document}$_4$\end{document} (1.0 mol/L) electrolyte. Correspondingly it also exhibits a high performance with an energy density of 59.7 Wh/kg. By means of combining a metal oxide that owns micro-mesoporous structure with graphene, this work provides a new opportunity for preparing high-voltage aqueous asymmetric supercapacitors without addition of conductive agent and binder.  相似文献   

4.
The development of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light. In this work, the effect of high energy radiation (\begin{document}$\gamma$\end{document}-ray) on the structure and the photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was first studied. No morphological change of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was observed by SEM under \begin{document}$\gamma$\end{document}-ray radiation. However, the XRD spectra of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals showed the characteristic 2\begin{document}$\theta$\end{document} of (113) plane shifts slightly from 28.37\begin{document}$^{\rm{o}}$\end{document} to 28.45\begin{document}$^{\rm{o}}$\end{document} with the increase of the absorbed dose, confirming the change in the crystal structure of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}. The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation. The photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} on the decomposition of methylene blue (MB) in water under visible light increases gradually with the increase of absorbed dose. Moreover, the improved photocatalytic performance of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals remained after three cycles of photocatalysis, indicating a good stability of the created oxygen vacancy defects. This work gives a new simple way to improve photocatalytic performance of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} through creating oxygen vacancy defects in the crystal structure by \begin{document}$\gamma$\end{document}-ray radiation.  相似文献   

5.
Reducing sizes of precious metals and utilization of the mixed small clusters of them as catalysts in reactions are important methods due to more active sites for higher catalytic efficiency. Based on first-principles calculations in this work, we found that the platinum-based clusters of Pt\begin{document}$ _3 $\end{document}X (X = Al, Si, Cu) which have the magic number 4 can effectively catalyze the water decomposition and hydrogen production in just one-step reaction process. The adsorbates of the H\begin{document}$ _2 $\end{document}O@Pt\begin{document}$ _3 $\end{document}X clusters have strong absorption in the ultraviolet and visible regions with wavelength from 300 nm to 760 nm, indicating the sunlight can be used to drive catalytic hydrolysis for producing clean hydrogen. In addition, the O atom remains on the clusters after hydrolysis and can react with CO to form CO\begin{document}$ _2 $\end{document} in activation barrier of 0.34\begin{document}$ - $\end{document}0.58 eV, showing the recycling ability of the products after hydrolysis for eliminating the "poisoning'' CO by oxidation. Moreover, the formed CO\begin{document}$ _2 $\end{document} molecule can be detached from the Pt\begin{document}$ _3 $\end{document}X clusters at 323 K. Our results provide interesting guidance for practical designing the useful photocatalysts.  相似文献   

6.
Direct Z-scheme CdO-CdS 1-dimensional nanorod arrays were constructed through a facile and simple hydrothermal process. The structure, morphology, photoelectrochemical properties and H\begin{document}$_2$\end{document} evolution activity of this catalyst were investigated systematically. The morphology of the obtained nanorod is a regular hexagonal prism with 100-200 nm in diameter. The calcination temperature and time were optimized carefully to achieve the highest photoelectrochemical performance. The as-fabricated hybrid system achieved a photocurrent density up to 6.5 mA/cm\begin{document}$^{2}$\end{document} and H\begin{document}$_{2}$\end{document} evolution rate of 240 μmol\begin{document}$\cdot$\end{document}cm\begin{document}$^{-2}$\end{document}\begin{document}$\cdot$\end{document}h\begin{document}$^{-1}$\end{document} at 0 V vs. Ag/AgCl, which is about 2-fold higher than that of the bare CdS nanorod arrays. The PEC performance exceeds those previously reported similar systems. A direct Z-scheme photocatalytic mechanism was proposed based on the structure and photoelectrochemical performance characterization results, which can well explain the high separation efficiency of photoinduced carriers and the excellent redox ability.  相似文献   

7.
Polydiacetylene (PDA) is one kind of the conjugated polymer with layered structure, which can serve as a host to accommodate the guest components through intercalation. In these intercalated PDAs, some of them were reported to have a nearly perfect organized structure and perform completely reversible thermochromism. Till now, these reported intercalated PDAs were made by only introducing a single component for intercalation. Here, we chose 10, 12-pentacosadiynoic acid (PCDA) as the monomer, of which the carboxyl-terminal groups can interact with either Tb\begin{document}$ ^{3+} $\end{document} ions or melamines (MAs). When the feeding molar ratio of PCDA, MA, and Tb\begin{document}$ ^{3+} $\end{document} ion was 3:267:1, only Tb\begin{document}$ ^{3+} $\end{document} ions were intercalated though excess MAs existed. Such Tb\begin{document}$ ^{3+} $\end{document}-intercalated poly-PCDA exhibited completely reversible thermochromism, where almost all the carboxyl groups interacted with Tb\begin{document}$ ^{3+} $\end{document} ions to form the nearly perfect structure. When the feeding molar ratio of PCDA, MA, and Tb\begin{document}$ ^{3+} $\end{document} ion was 3:267:0.6, both Tb\begin{document}$ ^{3+} $\end{document} ions and MAs were intercalated. There existed some defects in the imperfect MA-intercalated domains and at the domain boundaries. The MA/Tb\begin{document}$ ^{3+} $\end{document}-intercalated poly-PCDA exhibits partially reversible thermochromism, where the backbones near the defects are hard to return the initial conformation, while the rest, those at nearly perfect organized domains, are still able to restore the initial conformation.  相似文献   

8.
Carbon capture and storage technology have been rapidly developed to reduce the carbon dioxide (CO\begin{document}$ _2 $\end{document}) emission into the environment. It has been found that the amine-based organic molecules could absorb CO\begin{document}$ _2 $\end{document} efficiently and form the bicarbonate salts through hydrogen-bond (H-bond) interactions. Recently, the aqueous 1, 3-diphenylguanidine (DPG) solution was developed to trap and convert CO\begin{document}$ _2 $\end{document} to valuable chemicals under ambient conditions. However, how the DPG molecules interact with CO\begin{document}$ _2 $\end{document} in an aqueous solution remains unclear. In this work, we perform molecular dynamics simulations to explore the atomistic details of CO\begin{document}$ _2 $\end{document} in the aqueous DPG. The simulated results reveal that the protonated DPGH\begin{document}$ ^+ $\end{document} and the bicarbonate anions prefer to form complexes through different H-bond patterns. These double H-bonds are quite stable in thermodynamics, as indicated from the accurate density functional theory calculations. This study is helpful to understand the catalytic mechanism of CO\begin{document}$ _2 $\end{document} conversion in the aqueous DPG.  相似文献   

9.
Graphene oxide (GO) is a kind of water soluble two-dimensional materials containing a large amount of oxygen-containing groups which infuse GO with water solubility, biocompatibility and functionality, etc. But GO can be easily reduced by losing oxygen-containing groups under some circumstances such as irradiation of \begin{document}$\gamma$\end{document}-ray or ultraviolet (UV). In this work, we found that acetone can significantly slow down the reduction process of GO under the irradiation of either \begin{document}$\gamma$\end{document}-ray or UV, which was supported by analysis results with UV-visible (UV-Vis) absorption spectra, X-ray photoelectron spectroscopy, etc. Acetone can capture and remove strongly reducible hydrated electrons generated under \begin{document}$\gamma$\end{document}-irradiation. GO reduction by UV also involves electron transfer process which can be affected by the presence of acetone. Hence, acetone can be used to stabilize, adjust the radiation reduction process of GO. This would be interesting not only in radiation and radiation protection, but also in understanding the redox properties of GO.  相似文献   

10.
One simple and environmental friendly synthesis strategy for preparing low-cost magnetic Fe\begin{document}$ _3 $\end{document}C@C materials has been facilely developed using a modified sol-gel approach, wherein natural magnetite acted as the iron source. A chelating polycarboxylic acid such as citric acid (CA) was employed as the carbon source, and it dissolved Fe very effectively, Fe\begin{document}$ _3 $\end{document}O\begin{document}$ _4 $\end{document} and natural magnetite to composite an iron-citrate complex with the assistance of ammonium hydroxide. The core-shell structure of the as-prepared nanocomposites was formed directly by high-temperature pyrolysis. The Fe\begin{document}$ _3 $\end{document}C@C materials exhibited superparamagnetic properties (38.09 emu/mg), suggesting potential applications in biomedicine, environment, absorption, catalysis, etc.  相似文献   

11.
12.
Hydrogen evolution reaction (HER) is the major cathodic reaction which competes \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction reaction (\begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} RR) on Pt electrode. Molecular level understanding on how these two reactions interact with each other and what the key factors are of \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} RR kinetics and selectivity will be of great help in optimizing electrolysers for \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction. In this work, we report our results of hydrogen evolution and \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction on Pt(111) and Pt film electrodes in \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} saturated acid solution by cyclic voltammetry and infrared spectroscopy. In solution with pH > 2, the major process is HER and the interfacial pH increases abruptly during HER; \begin{document}${\rm C}\rm{O}_\rm{ad}$\end{document} is the only adsorbed intermediate detected in \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} reduction by infrared spectroscopy; the rate for \begin{document}${\rm C}\rm{O}_\rm{ad}$\end{document} formation increases with the coverage of UPD-H and reaches maximum at the onset potential for HER; the decrease of \begin{document}${\rm C}\rm{O}_\rm{ad}$\end{document} formation under HER is attributed to the available limited sites and the limited residence time for the reduction intermediate (\begin{document}$\rm{H}_\rm{ad}$\end{document}), which is necessary for \begin{document}${\rm C}\rm{O}_\rm{2}$\end{document} adsorption and reduction.  相似文献   

13.
OX\begin{document}$_2$\end{document} (X=halogen) molecules was studied theoretically. Calculation results show that delocalized \begin{document}$\pi_3^6$\end{document} bonds exist in their electronic structures and O atoms adopt the sp\begin{document}$^2$\end{document} type of hybridization, which violates the prediction of the valence shell electron pair repulsion theory of sp\begin{document}$^3$\end{document} type. Delocalization stabilization energy is proposed to measure the contribution of delocalized \begin{document}$\pi_3^6$\end{document} bond to energy decrease and proves to bring extra-stability to the molecule. These phenomena can be summarized as a kind of coordinating effect.  相似文献   

14.
This work developed a one-step process for renewable p-xylene production by co-catalytic fast pyrolysis (co-CFP) of cellulose and methanol over the different metal oxides modified ZSM5 catalysts. It has been proven that \begin{document}${\rm{L}}{{\rm{a}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}$\end{document}-modified ZSM5(80) catalyst was an effective one for the production of bio-based p-xylene. The selectivity and yield of p-xylene strongly depended on the acidity of the catalysts, reaction temperature, and methanol content. The highest p-xylene yield of 14.5 C-mol% with a p-xylene/xylenes ratio of 86.8% was obtained by the co-CFP of cellulose with 33wt% methanol over 20%\begin{document}${\rm{L}}{{\rm{a}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}$\end{document}-ZSM5(80) catalyst. The deactivation of the catalysts during the catalytic pyrolysis process was investigated in detail. The reaction pathway for the formation of p-xylene from cellulose was proposed based on the analysis of products and the characterization of catalysts.  相似文献   

15.
Tetrazole (H2CN4) and tetrazolate anion (HCN$_{4}^{-}$) are high‐energy compounds with a five‐membered ring‐type structures, which can be easily synthesized by HCN and HN3 and by HCN and N$_{3}^{-}$, respectively, in an irreversible reaction. The ab initio methods including MP2/6‐31G**, B3LYP/6‐31G**, B3LYP/6‐311+G(2d,p), and CBS/QB3 from Gaussian 98 program are employed to study the thermochemistry and reaction mechanism. The transition states of both HCN + HN3 → H2CN4 and HCN + N$_{3}^{-}$ → HCN$_{4}^{-}$ reaction are investigated, and it is found that the latter reaction is more favored than the former one in view of the chemical kinetics and thermodynamics, thus indicating that tetrazole (H2CN4) and tetrazolate anion (HCN$_{4}^{-}$) are formed more easily in an alkali environment than in other systems. Pentazole (HN5) is an unknown high‐energy compound and has not yet been synthesized. For comparison, HN5 and N$_{5}^{-}$, both which have similar type of synthetic reactions to the above‐mentioned reactions, are studied. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 80: 27–37, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号