首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王翡  蒋红兵  龚旗煌 《中国物理 B》2012,21(5):54212-054212
Through theoretical analysis,we show how aligning pulse durations affect the degree and the time-rate slope of nitrogen field-free alignment at a fixed pulse intensity.It is found that both the degree and the slope first increase,then saturate,and finally decrease with the increasing pump duration.The optimal durations for the maximum degree and the maximum slope of the alignment are found to be different.Additionally,they are found to mainly depend on the molecular rotational period,and are affected by the temperature and the aligning pump intensities.The mechanism of molecular alignment is also discussed.  相似文献   

2.
The effects of the characteristics of molecules and external fields on field-free molecular orientation are investigated through the comparison of HBr with LiH driven by the combination of a two-color laser pulse and a time-delayed THz laser pulse. It is shown that the dipole interaction has greater influence on field-free orientation than the hyperpolarizability interaction. In addition to the temperature dependence of orientation degree, the effects of the amplitudes of the two-color laser pulse and THz laser pulse, rising time, and THz laser frequency on molecular orientation are also discussed.  相似文献   

3.
The field-free alignment of CO2 produced in response to the excitation of a molecule by a high-intensity femtosecond pump pulse is measured with a simple coronography-like technique. The technique is based on the defocusing of a time-delayed probe pulse produced by the spatial distribution of aligned molecules. In the intensity regime explored here, the technique is shown to give valuable information about dynamic alignment. With the help of simulations, the degree of alignment is extracted from the data.  相似文献   

4.
Intense single-cycle THz pulses resonantly interacting with molecular rotations are shown to induce field-free orientation and alignment under ambient conditions. We calculate and measure the degree of both orientation and alignment induced by the THz field in an OCS gas sample, and correlate between the two observables. The data presents the first observation of THz-induced molecular alignment in the gas phase.  相似文献   

5.
In this Letter, we study the molecular alignment and orientation driven by two elliptically polarized laser pulses.It is shown that the field-free molecular alignment can be achieved in a three-dimensional(3D) case, while the field-free molecular orientation is only along the x and y directions, and that the field-free alignment and orientation along different axes are related to the populations of the rotational states. It is demonstrated that changing the elliptic parameter is efficient for controlling both in-pulse and post-pulse molecular alignment and orientation. The delay time also has an influence on the field-free molecular alignment and orientation.  相似文献   

6.
Li M  Pan H  Tong Y  Chen C  Shi Y  Wu J  Zeng H 《Optics letters》2011,36(18):3633-3635
We experimentally demonstrate ultrafast polarization switching of terahertz (THz) radiation generated by dual-color driving pulses composed of orthogonally polarized fundamental and second-harmonic waves, which can be controlled by field-free molecular alignment in air by modulating the relative phase between the two field components as a transient dynamic wave plate. By fine-tuning the time delay to properly match the molecular alignment revivals, a significant polarization modulation of the THz radiation is observed and both linearly and elliptically polarized THz radiations can be obtained.  相似文献   

7.
Field-free molecular alignment can be achieved by nonadiabatic rotational excitation of molecules with strong femtosecond laser pulses. We experimentally and theoretically demonstrate that the degree of alignment can be improved with multi-pulse excitation. An approach is proposed to tune the frequency of few-cycle pulses using field-free alignment of molecules.  相似文献   

8.
Nonadiabatic laser alignment of an asymmetric top molecule is studied using the combination of a quantum dynamical theory and time-resolved photofragment imaging experiments. In particular, the degree of alignment of iodobenzene, induced by an intense, linearly polarized picosecond laser pulse, is calculated and measured. Pronounced alignment is obtained under field-free conditions.  相似文献   

9.
We show (i) how the evolution of a wave packet created from an initial thermal ensemble can be controlled by manipulating interferences during the wave packet's fractional revivals and (ii) how the wave-packet evolution can be mapped onto the dynamics of a few-state system, where the number of states is determined by the amount of information one wants to track about the wave packet in the phase space. We illustrate our approach by (i) switching off and on field-free molecular axis alignment induced by a strong laser pulse and (ii) converting alignment into field-free orientation, starting with rotationally cold or hot systems.  相似文献   

10.
We show that the filamentation dynamics of a femtosecond laser probe pulse can be readily controlled by properly matching it to the quantum revivals of pre-aligned molecules prepared through impulsive rotational Raman excitation with an advancing ultrashort pump pulse. Several features of the filamentation process including supercontinuum generation, the length of the plasma channel generated in the wake of the filament, the associated secondary radiations and the multiple filamentation pattern are all easily modified by tuning the cross phase modulation induced by the field-free revivals of molecular alignment, through the delay between the pump and the probe pulses. We show that molecular alignment can also be used to generate conical waves with extremely short intensity spike called shocked X-waves and to further tune the frequency of a few-cycle laser pulse in the wake of a self-guided intense filament.  相似文献   

11.
We propose a scheme to coherently control the field-free orientation of NO molecule whose rotational temperature is above 0 K. It is found that the maximum molecular orientation is affected by two factors: one is the sum of the population of M = 0 rotational states and the other is their distribution, however, their distribution plays a much more significant role in molecular orientation than the sum of their population. By adopting a series of linearly polarized pulses resonant with the rotational states, the distribution of M = 0 rotational states is well rearranged. Though the number of pulses used is small, a relatively high orientation degree can be obtained. This scheme provides a promising approach to the achievement of a good orientation effect.  相似文献   

12.
We show experimentally that field-free alignment of iodobenzene molecules, induced by a single, intense, linearly polarized 1.4-ps-long laser pulse, can be strongly enhanced by dividing the pulse into two optimally synchronized pulses of the same duration. For a given total energy of the two-pulse sequence the degree of alignment is maximized with an intensity ratio of 1:3 and by sending the second pulse near the time where the alignment created by the first pulse peaks.  相似文献   

13.
与目前商用的太赫兹源相比,自旋太赫兹源具有超宽频谱、固态稳定以及成本低廉等优点,这使其成为下一代太赫兹源的主要研究焦点.但使用自旋太赫兹源时,通常需要外加磁场使铁磁层的磁化强度饱和,才能产生太赫兹波,这制约了其应用前景.基于此,本文制备了一种基于Ir Mn/Fe/Pt交换偏置结构的自旋太赫兹波发生器,通过Ir Mn/Fe中的交换偏置场和Fe/Pt中的超快自旋流注入与逆自旋霍尔效应相结合,在无外加磁场下产生了强度可观的太赫兹波.在Ir Mn和Fe的界面中插入超薄的Cu,可以使Fe在厚度很薄时零场下实现饱和磁化,并且其正向饱和场最高可达–10 m T,从而进一步提升无场下的太赫兹发射效率.零场下出射的太赫兹波的动态范围超过60 d B,达到可实用化的水平.通过旋转样品,发现产生的太赫兹波的偏振方向也会随之旋转,并且始终沿着面内垂直于交换偏置场的方向.此外,在此交换偏置结构的基础上,引入了一层自由的铁磁金属层Fe,设计了一种以Ir Mn/Fe/Pt/Fe为核心结构的自旋阀太赫兹源,发现产生的太赫兹强度在两层铁磁层反平行排列时比平行排列以及不引入自由铁磁金属层时均大约提升了40%.结果表明,基...  相似文献   

14.
In this paper, high-order harmonic generation (HHG) is demonstrated to provide a sensitive way for studying the dynamic process in the field-free molecular alignment. The dependence of the harmonic yield and the degree of alignment on the intensity of aligning pulse is observed in impulsively aligned CO2 molecules. A good agreement is found between the experimental and calculated results. At low pump intensities, the harmonic yield increases monotonously until the ionization induced refractive index gradient and neutral molecule depletion are significant. The results show that the optimum intensity is around 8.95 × 1013 W/cm2; this value is related to the molecular ionization potential.  相似文献   

15.
徐淑武  黄云霞  纪宪明 《中国物理 B》2011,20(12):123302-123302
In this paper, we investigate the control of the molecular wave packet of a linear molecule by two femtosecond laser pulses. It is shown that the odd and the even rotational wave packets created by a single laser pulse can be selectively excited by accurately controlling the time delay of another laser pulse. By inserting the peak of the second laser pulse at the position of maximum or minimum value around quarter or three quarter rotational period of the slope curve with odd (or even) rotational wave packet contribution that is created by the first laser pulse, the odd rotational wave packet can be enhanced (or suppressed) while the even rotational wave packet is suppressed (or enhanced). As a result, the molecular alignments around quarter and three quarter rotational periods can be obtained. Moreover, it is also shown that by inserting the second laser pulse around the quarter or three quarter rotational periods, the changes in the maximum degree of the molecular alignment for the odd and the even rotational wave packet contributions are consistent with their corresponding slope curves at these positions.  相似文献   

16.
We demonstrate theoretically that an efficient field-free molecular orientation driven by the positively chirped laser pulse whose frequency is in the terahertz regime can be achieved, taking the LiH molecule for example. Exact numerical calculations are performed by solving the time-dependent Schrödinger equation including the vibrational and rotational degrees of freedom. The maximal orientation degree of the LiH molecule  |  ? cosθ ?  |  max  = 0.85 under the action of chirped laser pulse with the peak intensity of 4.78 × 108 W/cm2 at T = 0 K, which is larger than  |  ? cosθ ?  |  max =0.75 driven by the half-cycle laser pulse with the same intensity. The molecular orientation degree decreases with the increase of temperature.  相似文献   

17.
We investigate strategies for field-free three dimensional molecular axis alignment using strong nonresonant laser fields under experimentally realistic conditions. Using the polarizabilites and rotational constants of an asymmetric top rotor molecule (ethene, C2H4), we consider three different methods for axis alignment of a Boltzmann distribution of rotors at 4 K. Specifically, we compare the use of impulsive kick laser pulses having both linear and elliptical polarization to the use of elliptically polarized switched laser pulses. We show that an enhanced degree of field-free three dimensional alignment of ground vibronic state molecules obtains from the use of two orthogonally polarized, time-separated laser pulses.  相似文献   

18.
Ding YJ 《Optics letters》2004,29(22):2650-2652
It is shown that the coherence lengths for terahertz (THz) generation based on difference-frequency generation within an ultrafast infrared pulse can be sufficiently long for a wide bandwidth about each phase-matching wavelength owing to a slight dispersion in the THz region. As a result, quasi-single-cycle THz pulses can be efficiently generated. An efficient conversion for the parametric process is made possible not only by use of the wide phase-matching bandwidth but also by optimization of the pulse width for each peak THz frequency. I have investigated the strong-pump regime and found the limits to the conversion efficiencies to generate high peak intensities efficiently for THz waves with which to explore nonlinear regimes of the THz interactions.  相似文献   

19.
The coherent control of field-free molecular orientation of CO with combined femtosecond single- and dual-color laser pulses has been theoretically studied. The effect of the delay time between the femtosecond single- and dual-color laser pulses is discussed, and the physical mechanism of the enhancement of molecular orientation with pre-alignment of the molecule is investigated. It is found that the basic mechanism is based on the creation of a rotational wave packet by the femtosecond single-color laser pulse. Furthermore, we investigate the interference between multiple rotational excitation pathways following pre-alignment with femtosecond single-color laser pulse. It is shown that such interference can lead to an enhancement of the orientation of CO molecule by a factor of 1.6.  相似文献   

20.
We show that a dramatic field-free molecular alignment can be achieved after exciting molecules with proper trains of strong ultrashort laser pulses. Optimal two- and three-pulse excitation schemes are defined, providing an efficient and robust molecular alignment. This opens new prospects for various applications requiring macroscopic ensembles of highly aligned molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号