首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xin Guan 《中国物理 B》2022,31(8):80302-080302
The Hall tube as a minimum model to simulate the integer quantum Hall effect is essential for exploring topological physics, while it has not been constructed in the recent developing successfully experiments on superconducting circuits. In this work, we propose a feasible experiment scheme using three legs superconducting circuits with transmon qubits to realize a Hall tube. Then we first investigate its topological properties. Since the time-reversal, particle-hole, and chiral symmetries are all broken for the system, the Hall tube belongs to the A class of the Altland-Zirnbauer classification. We obtain the corresponding topological phase transition both numerically and analytically. Since the chirality is a key character of the quantum Hall effect, we secondly investigate the chiral physics in the Hall tube. We find the topological protected chiral edge currents and discuss its robustness. Finally, we give the possible experimental observations of the topological state and topological protected chiral edge currents.  相似文献   

2.
喻祥敏  谭新生  于海峰  于扬 《物理学报》2018,67(22):220302-220302
近年来,探索新的拓扑量子材料、研究拓扑材料的新奇物理性质成为凝聚态物理领域的一个热点.但是,由于合成、测量等手段的限制,人们难以在真实材料中实现和观测很多理论预言的材料及其物理性质,促使量子模拟日益成为研究量子多体系统的一个重要手段.作为全固态器件,超导量子电路是一个在扩展性、集成性、调控性上都具有巨大优势的人工量子系统,是实现量子模拟的重要方案.本文总结了利用超导量子电路对时间-空间反演对称性保护的拓扑半金属、Hopf-link半金属和Maxwell半金属等拓扑材料的量子模拟,显示出超导量子电路在模拟凝聚态物理系统方面具有广阔前景.  相似文献   

3.
王志宙  吴一东  杜会静  井西利 《中国物理 B》2016,25(7):77303-077303
In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies.Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems.  相似文献   

4.
王青海  李锋  黄学勤  陆久阳  刘正猷 《物理学报》2017,66(22):224502-224502
基于Su-Schrieffer-Heeger模型,构造了一种一维非线性声子晶体,通过调控外加在声子晶体上的预紧力,可调控声子晶体的拓扑态,从而实现拓扑相变.利用这一效应,把该非线性声子晶体与另一线性声子晶体形成异质结构,可以实现一种新型声学开关:通过调节预紧力即调控非线性声子晶体的拓扑相,可以实现异质结构中界面态从无到有的转变,从而实现了开关效应.利用该效应可望开发新型声学器件,如可调谐振器、可调滤波器、可调隔振器等.  相似文献   

5.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

6.
沈清玮  徐林  蒋建华 《物理学报》2017,66(22):224102-224102
二维圆环结构的三角晶格磁光光子晶体中可以呈现多重拓扑相.在不同的几何参数和磁场下,这些拓扑相包括正常光子带隙相、量子自旋霍尔相和反常量子霍尔相.与文献[1]类似,该结果展现了二维光子晶体丰富的拓扑相变现象.  相似文献   

7.
游建强 《物理》2010,39(12):810-815
超导量子器件能够展现宏观量子相干性.基于超导量子器件的量子计算是量子信息领域中的一个重要研究方向,同时,超导量子器件物理特性的研究也是目前凝聚态物理和量子光学领域的交叉前沿课题.文章简述了近年来在超导量子计算方面的一些重要结果和进展,并讨论了其研究现状和发展趋势.  相似文献   

8.
王腾辉  吴建澜  尹艺  许祝安 《物理》2018,47(5):310-315
随着拓扑相和拓扑材料的发现,拓扑已经从数学概念变成现代凝聚态物理学一个重要的前沿方向。尽管越来越多的拓扑材料被预言,在人造可控量子体系中进行拓扑量子模拟仍会对材料的理解和制备起到极大的促进作用。文章简单总结了基于冷原子和超导量子比特系统开展拓扑量子模拟的进展。介绍了这两种量子系统的特点,以及相应的拓扑量子模拟实验方法,还分析了这两种体系在实验手段和物理原理上的联系。  相似文献   

9.
郝宁  胡江平 《物理学报》2018,67(20):207101-207101
铁基超导体和拓扑量子材料是近年来凝聚态物理两个重要的前沿研究方向.铁基超导体中是否能衍生出非平庸的拓扑现象是一个非常有意义的问题.本文从晶体对称性、布里渊区高对称点附近的有效模型以及自旋轨道耦合相互作用三个方面具体分析了铁基超导的电子结构的基本特点.在此基础上,重点阐述铁基超导的正常态、临近超导的长程有序态以及超导态中非平庸的拓扑量子态是如何衍生的;具体介绍了相关的理论模型以及结果,回顾了相关的实验进展,展望了该领域的发展前景.  相似文献   

10.
Ningjing Yang 《中国物理 B》2023,32(1):17201-017201
Biphenylene is a new topological material that has attracted much attention recently. By amplifying its size of unit cell, we construct a series of planar structures as homogeneous carbon allotropes in the form of polyphenylene networks. We first use the low-energy effective model to prove the topological three periodicity for these allotropes. Then, through first-principles calculations, we show that the topological phase has the Dirac point. As the size of per unit cell increases, the influence of the quaternary rings decreases, leading to a reduction in the anisotropy of the system, and the Dirac cone undergoes a transition from type II to type I. We confirm that there are two kinds of non-trivial topological phases with gapless and gapped bulk dispersion. Furthermore, we add a built-in electric field to the gapless system by doping with B and N atoms, which opens a gap for the bulk dispersion. Finally, by manipulating the built-in electric field, the dispersion relations of the edge modes will be transformed into a linear type. These findings provide a hopeful approach for designing the topological carbon-based materials with controllable properties of edge states.  相似文献   

11.
The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps undergo closing-then-reopening processes, accompanied with the changing of the winding numbers.  相似文献   

12.
葛自勇  黄瑞珍  孟子杨  范桁 《中国物理 B》2022,31(2):20304-020304
Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implementation to approximate Z;LGT on superconducting quantum circuits,where the effective theory is a mixture of a LGT and a gauge-broken term.By using matrix product state based methods,both the ground state properties and quench dynamics are systematically investigated.With an increase of the transverse(electric)field,the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.In the ordered phase,an approximate Gauss law of the Z;LGT emerges in the ground state.Moreover,to shed light on the experiments,we also study the quench dynamics,where there is a dynamical signature of the spontaneous translational symmetry breaking.The spreading of the single particle of matter degree is diffusive under the weak transverse field,while it is ballistic with small velocity for the strong field.Furthermore,due to the emergent Gauss law under the strong transverse field,the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping.Our results pave the way for simulating the LGT on superconducting circuits,including the quantum phase transition and quench dynamics.  相似文献   

13.
We study two-legged spin-1 ladder systems with D2×σD2×σ symmetry group, where D2D2 is discrete spin rotational symmetry and σσ means interchain reflection symmetry. The system has one trivial phase and seven nontrivial symmetry protected topological (SPT) phases. We construct Hamiltonians to realize all of these SPT phases and study the phase transitions between them. Our numerical results indicate that there is no direct continuous transition between any two SPT phases we studied. We interpret our results via topological nonlinear sigma model effective field theory, and further conjecture that generally there is no direct continuous transition between two SPT phases in one dimension if the symmetry group is discrete at all length scales.  相似文献   

14.
何敬  寇谡鹏 《中国物理 B》2016,25(11):117310-117310
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states.In this paper,we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters.We find that both topological defects(quantized vortices) and non topological defects(vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects.These topological mid-gap states have nontrivial topological properties,including the nonzero Chern number and the gapless edge states.Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters.  相似文献   

15.
蒙雅  关欣 《大学物理》2023,42(1):7-10+13
留数定理是高校物理专业必修课程数学物理方法中的一个重要定理.传统教学中关于该定理的讲授着重于数学公式的推导和数学思想的传达,而对于其在具体物理问题上的应用鲜有涉及.本文以一维Su-Schrieffer-Heeger模型的拓扑相变问题为例,阐明了如何利用留数定理解析得到二阶位移量的表达式并用该物理量表征拓扑相变.在讲授留数定理的教学过程中引入具体物理问题的分析实例,可以使学生更深刻地理解数学定理中的物理内涵.  相似文献   

16.
《中国物理 B》2021,30(6):66701-066701
Floquet theorem is widely used in the light-driven systems. But many 2 D-materials models under the radiation are investigated with the high-frequency approximation, which may not be suitable for the practical experiment. In this work,we employ the non-perturbative Floquet method to strictly investigate the photo-induced topological phase transitions and edge states properties of graphene nanoribbons under the light irradiation of different frequencies(including both low and high frequencies). By analyzing the Floquet energy bands of ribbon and bulk graphene, we find the cause of the phase transitions and its relation with edge states. Besides, we also find the size effect of the graphene nanoribbon on the band gap and edge states in the presence of the light.  相似文献   

17.
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.  相似文献   

18.
刘欣  廖庆洪  方光宇  王月媛  刘树田 《中国物理 B》2014,23(2):20311-020311
A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that the interaction time is short, which is important in view of decoherence. In particular, the phase gate can be realized simply with a single interaction between the qubits and the cavity mode. With cavity decay being considered, the fidelity and success probability are both very close to unity.  相似文献   

19.
王彦兰  李妍 《物理学报》2020,(9):181-190
基于背散射抑制且对缺陷免疫的传输性质,光子拓扑绝缘体为电磁传输调控提供了一种新颖的思路.类比电子体系中的量子自旋霍尔效应,本文设计出一种简单的二维介电光子晶体,以实现自旋依赖的光子拓扑边界态.该光子晶体是正三角环形硅柱子在空气中排列而成的蜂窝结构.将硅柱子绕各自中心旋转60°,可实现二重简并的偶极子态和四极子态之间的能带翻转.这两对二重简并态的平均能流密度围绕原胞中心的手性可充当赝自旋自由度,其点群对称性可用来构建赝时间反演对称.根据k·p微扰理论,给出了布里渊区中心附近的有效哈密顿量以及对应的自旋陈数,由此证实能带翻转的实质是拓扑相变.数值计算结果揭示,在拓扑非平庸和平庸的光子晶体分界面上可实现单向传输且对弯曲、空穴等缺陷免疫的拓扑边界态.本文中的光子晶体只由电介质材料组成并且晶格结构简单,实现拓扑相变时无需改变柱子的填充率或位置,只需转动一个角度.因此,这种结构在拓扑边界态的应用中更为有效.  相似文献   

20.
谭为  陈鸿 《物理》2017,46(1):29-38
拓扑态是当前凝聚态物理中的研究热点,是一种由于整体拓扑效应所导致的全新电子态。近年来,大量理论和实验工作表明,由于拓扑态本质上是一种单粒子波动行为,因此可以在光学体系中找到类比,于是开启了光学拓扑态这一新兴研究方向。光子晶体、光学耦合腔阵列等体系成为重要的拓扑态模拟平台。文章主要以一维Dirac方程体系和二维p波超导体系为例,介绍超构材料(Metamaterials)中的光学拓扑态特性,包括能带翻转、边界态、畴壁、涡旋零能态等典型拓扑行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号