首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caihong Jia 《中国物理 B》2021,30(12):124702-124702
Studies show that the sample thickness is an important parameter in investigating the thermal transport properties of materials under high-temperature and high-pressure (HTHP) in the diamond anvil cell (DAC) device. However, it is an enormous challenge to measure the sample thickness accurately in the DAC under severe working conditions. In conventional methods, the influence of diamond anvil deformation on the measuring accuracy is ignored. For a high-temperature anvil, the mechanical state of the diamond anvil becomes complex and is different from that under the static condition. At high temperature, the deformation of anvil and sample would be aggravated. In the present study, the finite volume method is applied to simulate the heat transfer mechanism of stable heating DAC through coupling three radiative-conductive heat transfer mechanisms in a high-pressure environment. When the temperature field of the main components is known in DAC, the thermal stress field can be analyzed numerically by the finite element method. The obtained results show that the deformation of anvil will lead to the obvious radial gradient distribution of the sample thickness. If the top and bottom surfaces of the sample are approximated to be flat, it will be fatal to the study of the heat transport properties of the material. Therefore, we study the temperature distribution and thermal conductivity of the sample in the DAC by thermal-solid coupling method under high pressure and stable heating condition.  相似文献   

2.
杨璐  刘程浩  王亚龙  朱鹏程  王瑶  邓元 《中国物理 B》2022,31(2):28204-028204
With the growing need on distributed power supply for portable electronics,energy harvesting from environment becomes a promising solution.Organic thermoelectric(TE)materials have advantages in intrinsic flexibility and low thermal conductivity,thus hold great prospect in applications as a flexible power generator from dissipated heat.Nevertheless,the weak electrical transport behaviors of organic TE materials have severely impeded their development.Moreover,compared with p-type organic TE materials,stable and high-performance n-type counterparts are more difficult to obtain.Here,we developed a n-type polyaniline-based hybrid with core-shell heterostructured Bi;S;@Bi nanorods as fillers,showing a Seebeck coefficient-159.4μV/K at room temperature.Further,a couple of n/p legs from the PANI-based hybrids were integrated into an elastomer substrate forming a stretchable thermoelectric generator(TEG),whose function to output stable voltages responding to temperature differences has been demonstrated.The in situ output performance of the TEG under stretching could withstand up to 75%elongation,and stability test showed little degradation over a one-month period in the air.This study provides a promising strategy to develop stable and high thermopower organic TEGs harvesting heat from environment as long-term power supply.  相似文献   

3.
Ao Li 《中国物理 B》2022,31(4):40706-040706
High-temperature nuclear magnetic resonance (NMR) has proven to be very useful for detecting the temperature-induced structural evolution and dynamics in melts. However, the sensitivity and precision of high-temperature NMR probes are limited. Here we report a sensitive and stable high-temperature NMR probe based on laser-heating, suitable for in situ studies of metallic melts, which can work stably at the temperature of up to 2000 K. In our design, a well-designed optical path and the use of a water-cooled copper radio-frequency (RF) coil significantly optimize the signal-to-noise ratio (S/NR) at high temperatures. Additionally, a precise temperature controlling system with an error of less than ±1 K has been designed. After temperature calibration, the temperature measurement error is controlled within ±2 K. As a performance testing, 27Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ. Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than 0.001 ppm per hour. This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids, such as glass transition and liquid-liquid transition.  相似文献   

4.
本文针对非能动传热机制下简单立方球床堆有效导热系数进行了数值研究,根据有效导热系数的空间分布特性,对球床堆的近壁面区域和主体区域作了划分;分析了不同非能动传热机制下的有效导热系数的壁面效应;最后分析了导热、辐射和自然对流对近壁面和主体区域有效导热系数的贡献.结果发现,近壁面区域是在壁面附近一个球径范围内的区域;由于辐射...  相似文献   

5.
《Physics letters. A》2019,383(36):126017
In order to investigate the mechanism of the extremely high thermal conductivity of the suspended graphene, a nonlocal heat conduction model of heat conduction in two-dimensional materials under a temperature gradient along the length direction is proposed. This model shows that the heat transport of the suspended graphene along the length direction under the nonlocal effect in the width and thickness directions demonstrates a similarity with the viscous Poiseuille flow between two parallel plates. Based on this model, the dimensional crossover of heat conduction in few-layer graphene is demonstrated and the impact of temperature variation on the thermal conductivity of graphene is investigated. The obtained results show a good agreement with the experimental ones. The proposed model indicates that the combination of the Poiseuille phonon transport and boundary conditions on the upper and lower surfaces of the suspended graphene plays a decisive role on the ultra-high heat conductivity of graphene.  相似文献   

6.
This work aims to study magnetohydrodynamic flow through a circular cylinder in a horizontal position of SWCNTs in blood as a base fluid in the existence of non-linear thermal radiation and heat source/sink. Three kinds of nanoparticles shapes are considered. The study is employed the finite element technique to explore and enhance the influences of essential parameters on temperature profiles and is debated the heat transport within blood injects with SWCNTs and exposes to electromagnetic radiation. The treatment with thermal analysis and heat transfer rate being a better substitute more than surgery and chemotherapy for cancer therapy. Utilizing of nanoparticles thermal features is a mounting area of nanomedicine field because of the probable for purposeful demolition of cancer cells.This remedy is relied on many parameters, including nanofluid thermal conductivity, nanoparticles volume fraction,thermal radiation and power and heat source. The numerical solutions for flow and heat transfer features are assessed for diverse governing parameters values. The obtained results are substantiated against the relevant numerical results in the published researches. Results show that both flow velocity and temperature increase for larger values of thermal radiation, heat source and SWCNTs volume fraction with lamina and cylinder shapes. Also, spherical shape of SWCNTs occurs high disturbances in velocity and temperature distribution in the case of cooled cylinder.  相似文献   

7.
考虑界面接触热阻的一维复合结构的热整流机理   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了考虑变截面、变热导率及界面接触热阻效应的组合热整流结构的温度场及热整流系数的理论模型和有限元解.数值算例证明了本文模型及算法的可靠性,进而通过参数影响研究确定了若干几何及材料参数对结构热整流系数的影响规律,揭示界面接触热阻对热整流效果的影响机理.研究结果表明长度比、截面半径变化率、热导率、边界条件温差和界面接触热阻等因素必须通过优化设计才能得到最大的热整流系数,同时界面接触热阻的引入也为调控热整流系数提供了一条新的途径.  相似文献   

8.
光谱发射率是表征材料热物理性能的重要参数。对于非导电材料的高温光谱发射率测试,一般采用高温加热炉加热或辐射加热的方式来进行发射率测试,存在的问题是采用高温石墨炉加热时,样品可能会与高温石墨发生化学反应,从而破坏材料原有物性;采用辐射加热,一般是单向静止加热,会存在样品温场梯度非均匀分布的问题。基于激光旋转加热和样品/黑体整体一体化设计,提出了一种“样品动中测”的非导电材料高温光谱发射率测试新方法,建立了相应的测量模型,突破了传统的 “样品静中测”的局限,样品与参考黑体共形一体化设计,采用微区域光谱辐射成像方法,同时测量参考黑体和样品的光谱辐射能量与温度。建立了激光旋转加热状态下的热传导方程,对典型样品材料的温度分布进行了仿真计算,结果表明旋转样品温场分布较为均匀,分析了温场分布与红外光谱发射率测量误差间的关系,给出了适用于本测试方法的材料的热导率下限值。基于该方法,搭建了相应的测量装置,对典型材料碳化硅在1 000 K时的光谱发射率进行了测试,在4 μm处对各个典型高温温度点的光谱发射率进行了测试,得到了碳化硅材料在红外波段的光谱发射率波长变化和温度变化规律特性。与国外的测量结果进行了比对,结果较为一致,验证了激光旋转加热光谱发射率测试方法的可行性。采用此方法,不破坏样品本身的理化特性,样品加热升温速度快,测量温度范围上限高,有效减小了激光静止单向加热带来的温度不均匀性,可同时测量出样品和参考黑体的光谱辐射亮度及温度,无需另外再设计标准高温黑体,解决了现有非导电材料高温光谱发射率测试中非均匀加热和辐射能量同步比对测量的问题,可应用于多种非导电材料高温光谱发射率的测试。  相似文献   

9.
A detailed numerical modeling is performed to investigate coupled heat transfer of natural convection, radiation and conduction in high-temperature multilayer thermal insulation (MTI), which consists of high-porous, non-gray semitransparent fibrous materials and reflective foils. Radiation within fibers, radiation between fibers and the reflective foils, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection, whereas the radiative transfer equation (RTE) is used to solve the radiative heat flux for non-gray materials. Key features of the macroscopic model include two-dimensional effects, non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium (LTNE). This model was validated by comparison with experimental data and it was used to investigate natural convection of coupled heat transfer in multilayer insulation, numerical results showed that natural convection is more likely to occur when the heated/cooled rate is low, while natural convection can be ignored in simulating steady-state coupled heat transfer in MTI.  相似文献   

10.
两相复合材料有效热导率的理论推导   总被引:1,自引:0,他引:1  
复合材料有效热导率的解析表达式一直是传热问题中人们想要解决的问题.本文选用合适的单元体,采用热阻模型和积分平均方法,分别对分散相为球体和圆柱体的两相复合材料的有效热导率进行了推导.对于多孔复合材料,当孔隙率较大或温度较高时辐射换热的影响不能忽略,本文分析了气孔为球体或圆柱体时辐射换热对其有效热导率的影响.将计算所得有效热导率与相关实验数据进行了比较,结果表明两者吻合较好,证明了公式的准确性.  相似文献   

11.
高能激光对复合材料的辐照效应研究,可以拓展激光技术的应用范围。为了预测激光辐照下碳纤维增强复合材料的瞬态热响应,提出了一个简化计算模型。采用隐式有限体积方法求解控制方程,边界条件包括激光辐照加热、对流换热、辐射换热以及材料表面烧蚀。考虑了激光辐照过程中基体热分解、质量迁移、比热容变化情况。基于该烧蚀模型,预测了激光辐照下碳纤维增强复合材料的瞬态温度场和表面烧蚀速率,计算结果与文献试验数据一致。最后,通过修正烧蚀模型分析了高速气流剥蚀对激光辐照复合材料热效应的影响。  相似文献   

12.
Peng Liu 《中国物理 B》2022,31(10):106104-106104
As a fundamental thermodynamic variable, pressure can alter the bonding patterns and drive phase transitions leading to the creation of new high-pressure phases with exotic properties that are inaccessible at ambient pressure. Using the swarm intelligence structural prediction method, the phase transition of TiF3, from R—3c to the Pnma phase, was predicted at high pressure, accompanied by the destruction of TiF6 octahedra and formation of TiF8 square antiprismatic units. The Pnma phase of TiF3, formed using the laser-heated diamond-anvil-cell technique was confirmed via high-pressure x-ray diffraction experiments. Furthermore, the in situ electrical measurements indicate that the newly found Pnma phase has a semiconducting character, which is also consistent with the electronic band structure calculations. Finally, it was shown that this pressure-induced phase transition is a general phenomenon in ScF3, VF3, CrF3, and MnF3, offering valuable insights into the high-pressure phases of transition metal trifluorides.  相似文献   

13.
14.
 高压下的电学性质测量是获得材料物理性质的有效手段。利用集成在金刚石对顶砧上的薄膜微电路,测量了高压下Fe3O4/β-CD(β-糊精)的电导率,并分析了电导率随压力的变化关系。在0~39.9 GPa范围内,Fe3O4/β-CD的电导率随压力的增加而逐渐增大,并呈半导体的特征;而在17.0 GPa处其电导率发生突变,表明样品发生了高压相变。在卸压过程中,电导率随压力的变化呈线性关系,并且卸压后样品的电导率不能回到最初的状态,推测这是一个不可逆的高压结构相变。  相似文献   

15.
Xia Zhao 《中国物理 B》2022,31(9):96201-096201
The phase transitions among the high-pressure polymorphic forms of CaCO3 (cc-I, cc-II, cc-III, and cc-IIIb) are investigated by dynamic diamond anvil cell (dDAC) and in situ Raman spectroscopy. Experiments are carried out at room temperature and high pressures up to 12.8 GPa with the pressurizing rate varying from 0.006 GPa/s to 0.056 GPa/s. In situ observation shows that with the increase of pressure, calcite transforms from cc-I to cc-II at ~ 1.5 GPa and from cc-II to cc-III at ~ 2.5 GPa, and transitions are independent of the pressurizing rate. Further, as the pressure continues to increase, the cc-IIIb begins to appear and coexists with cc-III within a pressure range that is inversely proportional to the pressurizing rate. At the pressurizing rates of 0.006, 0.012, 0.021, and 0.056 GPa/s, the coexistence pressure ranges of cc-III and cc-IIIb are 2.8 GPa-9.8 GPa, 3.1 GPa-6.9 GPa, 2.7 GPa-6.0 GPa, and 2.8 GPa-4.5 GPa, respectively. The dependence of the coexistence on the pressurizing rate may result from the influence of pressurizing rate on the activation process of transition by reducing the energy barrier. The higher the pressurizing rate, the lower the energy barrier is, and the easier it is to pull the system out of the coexistence state. The results of this in situ study provide new insights into the understanding of the phase transition of calcite.  相似文献   

16.
吴芳  王伟 《物理学报》2015,64(4):47201-047201
用高压烧结法对水热法制备的Bi2Te3纳米线及纳米颗粒粉体进行了压制成型, 并与真空热压法制备的样品进行了形貌和热电性能的比较. 研究表明, 高压烧结样品内的晶粒尺寸明显小于热压样品. 热电性能的研究表明, 高压烧结样品的电阻率、赛贝克系数和热导率均优于真空热压样品. 由纳米线粉体高压烧结的样品其热电优值ZT 在室温时达到了0.5, 高于真空热压样品的值, 表明高压烧结是热电材料纳米粉体成型的一种有效方法.  相似文献   

17.
周俊  李保文 《物理》2013,42(02):89-99
微纳米电子器件的散热问题是目前制约半导体工业发展的重要瓶颈。将电子器件工作时产生的热量传输到封装外壳后再耗散到环境中去需要好几个步骤,每个步骤需要不同的方法,其中有些步骤涉及到了固体中的界面热传导问题和高性能导热材料。文章先介绍了近期关于微纳米尺度器件散热问题中碰到的热传导问题在理论和实验两方面的研究进展。在热传导理论和计算方法方面,作者讨论了傅里叶定律在微纳米尺度的适用性,介绍了玻尔兹曼方程、分子动力学模拟和格林函数方法。在热传导实验方面,介绍了用扫描热显微镜测量样品表面温度和用超快激光反射法测量薄膜材料的热导率及其界面热阻。然后介绍了界面热传导问题,包括界面热阻的计算以及电子—声子相互作用对界面热阻的影响。最后作者介绍了关于高性能导热材料方面的最新进展,包括碳基导热材料、晶格结构类似于石墨烯的氮化硼材料、高分子有机材料以及界面热阻材料。  相似文献   

18.
物理参数变化对短脉冲激光激励温度场的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
 为研究多物理参数(耦合系数、电子热导率、电子热容、晶格热容)同时随温度变化对短脉冲激光辐照金属材料产生温度场分布的影响,基于双温耦合理论,建立了短脉冲激光辐照金属材料金的加热过程的有限元求解模型。在同时考虑脉冲激光的空间、时间分布和多参数同时随温度变化的情况下,得到短脉冲激光辐照金属材料金激励产生的温度场二维瞬态分布,并进一步比较了多物理参数同时随温度变化和采用室温物理参数两种情况下温度场分布的区别。数值结果表明:多物理参数同时随温度变化使电子温度和晶格温度的上升变快,最大值变大,而且使得材料中激光穿透直接辐照到的区域温度变高。  相似文献   

19.
A systematic investigation of oxidation on a superconductive Fe Te_(0.5)Se_(0.5)thin film,which was grown on Nb-doped SrTiO_3(001) by pulsed laser deposition,has been carried out.The sample was exposed to ambient air for one month for oxidation.Macroscopically,the exposed specimen lost its superconductivity due to oxidation.The specimen was subjected to in situ synchrotron radiation photoelectron spectroscopy(PES) and x-ray absorption spectroscopy(XAS) measurements following cycles of annealing and argon ion etching treatments to unravel what happened in the electronic structure and composition after exposure to air.By the spectroscopic measurements,we found that the as-grown FeTe_(0.5)Se_(0.5)superconductive thin film experienced an element selective substitution reaction.The oxidation preferentially proceeds through pumping out the Te and forming Fe–O bonds by O substitution of Te.In addition,our results certify that in situ vacuum annealing and low-energy argon ion etching methods combined with spectroscopy are suitable for depth element and valence analysis of layered structure superconductor materials.  相似文献   

20.
Zhiyuan Liu 《中国物理 B》2022,31(10):107303-107303
The binary CoSb3 skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of CoSb3 materials can be significantly reduced through phonon engineering, such as low-dimensional structure, the introduction of nano second phases, nanointerfaces or nanopores, which greatly improves their ZT values. The phonon engineering can optimize significantly the thermal transport properties of CoSb3-based materials. However, the improvement of the electronic transport properties is not obvious, or even worse. Energy band and charge-carrier engineering can significantly improve the electronic transport properties of CoSb3-based materials while optimizing the thermal transport properties. Therefore, the decoupling of thermal and electronic transport properties of CoSb3-based materials can be realized by energy band and charge-carrier engineering. This review summarizes some methods of optimizing synergistically the electronic and thermal transport properties of CoSb3 materials through the energy band and charge-carrier engineering strategies. Energy band engineering strategies include band convergence or resonant energy levels caused by doping/filling. The charge-carrier engineering strategy includes the optimization of carrier concentration and mobility caused by doping/filling, forming modulation doped structures or introducing nano second phase. These strategies are effective means to improve performance of thermoelectric materials and provide new research ideas of development of high-efficiency thermoelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号