首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王义炎  郁巧鹤  夏天龙 《中国物理 B》2016,25(10):107503-107503
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles.Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials.In this paper,we report the synthesis of high quality single crystals of BaMnBi_2 and investigate the transport properties of the samples.BaMnBi_2 is a metal with an antiferromagnetic transition at T_N = 288 K.The temperature dependence of magnetization displays different behavior from CaMnBi_2 and SrMnBi_2,which suggests the possible different magnetic structure of BaMnBi_2.The Hall data reveals electron-type carriers and a mobility μ(5K)= 1500 cm~2/V·s.Angle-dependent magnetoresistance reveals the quasi-two-dimensional(2D) Fermi surface in BaMnBi_2- A crossover from semiclassical MR~H~2dependence in low field to MR~H dependence in high field,which is attributed to the quantum limit of Dirac fermions,has been observed in magnetoresistance.Our results indicate the existence of Dirac fermions in BaMnBi_2.  相似文献   

2.
We have measured the magnetoresistance ρ(H,T0) of the magnetic Kondo lattice CeAl2 at temperatures T0 in the range 0.035 – 1.3 K, well below the Néel temperature TN=3.8 K, in magnetic fields H up to 145 k0e. The ρ vs H curve exhibits a rapid decrease between H=45–65 kOe corresponding to the metamagnetic transition at H=HM. The resistivity then levels out to a value which depends only weakly on field and temperature. For HM a small positive magnetoresistance was observed with the derivative dρ/dH increasing as the temperature is lowered. The present results are compared with the ρ(H,T0) data obtained for the CePb3 magnetic Kondo lattice, where the decrease in the resistivity at HHM was considered earlier to be evidence of field induced superconductivity.  相似文献   

3.
The data on the resistance and magnetoresistance (MR) as well as measurements of the linear and nonlinear susceptibilities are presented for a Nd0.75Ba0.25MnO3 single crystal with the Curie temperature TC≈129 K. Although this compound remains insulating in the ferromagnetic state, its resistance has an anomaly near TC and it reveals the colossal magnetoresistance. The data on the magnetic response are well described by the dynamic scaling theory for 3D isotropic ferromagnets in the paramagnetic critical region at τ>τ*≈0.11, τ=(TTC)/TC. Below τ* an anomalous critical behavior is found that suggests the coexistence of two magnetic phases. This behavior is discussed in terms of a phase separation which can occur in the moderately doped manganites exhibiting an orbital ordering.  相似文献   

4.
Yu-Ting Niu 《中国物理 B》2021,30(11):117506-117506
Two-dimensional ferromagnetic van der Waals (2D vdW) heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials, and for manipulating spin degree of freedom at the limit of few atomic layers, which empower next-generation spintronic and memory devices. However, to date, the electronic properties of 2D ferromagnetic heterostructures still remain elusive. Here, we report an unambiguous magnetoresistance behavior in CrI3/graphene heterostructures, with a maximum magnetoresistance ratio of 2.8%. The magnetoresistance increases with increasing magnetic field, which leads to decreasing carrier densities through Lorentz force, and decreases with the increase of the bias voltage. This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.  相似文献   

5.
朱振业 《物理学报》2018,67(7):77701-077701
超晶格压电行为与内部正离子之间的内在联系尚缺乏相关的研究.本文基于密度泛函理论的第一性原理方法,研究了三种无铅四方相钙钛矿铁电超晶格(BaTiO_3/SrTiO_3,KNbO_3/KTaO_3和BaTiO_3/KNbO_3)中A,B位正离子对整体的极化和压电贡献.通过计算超晶格不同轴向应变条件下原子结构和Born有效电荷,获得了超晶格和各个正离子的极化值和压电系数.结果表明,在轴向压缩应变条件下(-0.15—0 A),无铅超晶格中的正离子位移D(A)和D(B)受到抑制,在拉应变时位移才显著增大,因此极化和压电行为不明显.在轴向拉伸应变作用下(0—0.15 A),无铅超晶格中各原子的极化贡献显著增大,特别是B位原子Ti,Nb和Ta的极化贡献使得总的极化强度也显著提高,并当拉应变达到一定值,超晶格才会出现明显的压电行为.无铅超晶格的极化和压电行为主要由B位正离子贡献.  相似文献   

6.
垂直磁各向异性稀土-铁-石榴石纳米薄膜在自旋电子学中具有重要应用前景.本文使用溅射方法在(111)取向掺杂钇钪的钆镓石榴石(Gd0.63Y2.37Sc2Ga3O12,GYSGG)单晶衬底上外延生长了2—100 nm厚的钬铁石榴石(Ho3Fe5O12,HoIG)薄膜,并进一步在HoIG上沉积了3 nm Pt薄膜.测量了室温下HoIG的磁各向异性和HoIG/Pt异质结构的自旋相关输运性质.结果显示,厚度薄至2 nm的HoIG薄膜(小于2个单胞层)在室温仍具有铁磁性,且由于外延应变,2—60 nm厚HoIG薄膜都具有很强的垂直磁各向异性,有效垂直各向异性场最大达350 mT;异质结构样品表现出非常可观的反常霍尔效应和“自旋霍尔/各向异性”磁电阻效应,前者在HoIG厚度小于4 nm时开始缓慢下降,而后者当HoIG厚度小于7 nm时急剧减小,说明相较于反常霍尔效应,磁电阻效应对HoIG的体磁性相对更加敏感;此外,自旋相关热电压随HoIG厚度减薄在整个厚度范围以指数方式下降,说明遵从热激化磁振子运动规律的自旋塞贝克效应是其主要贡献者.本文结果表明HoIG纳米薄膜具有可调控的垂直磁各向异性,厚度大于4 nm的HoIG/Pt异质结构具有高效的自旋界面交换作用,是自旋电子学应用发展的一个重要候选材料.  相似文献   

7.
A detailed study of the in-plane magnetotransport properties of spin valves with one and two Fe3O4 electrodes is presented. Fe3O4/Au/Fe3O4 spin valves exhibit a clear anisotropic magnetoresistance in small magnetic fields but no giant magnetoresistance (GMR). The absence of GMR in these structures is due to simultaneous magnetization reversal in the two Fe3O4 layers. By contrast, a negative GMR effect is measured on Fe3O4/Au/Fe spin valves. The negative GMR is attributed to an electron spin scattering asymmetry at the Fe3O4/Au interface or an induced spin scattering asymmetry in the Au interfacial layers.  相似文献   

8.
In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.  相似文献   

9.
We carried out a comprehensive study of structural, magnetic and electrotransport properties of as-deposited and annealed (Ni80Fe20)χAg(1−χ) heterogenous alloys prepared by sputtering. The NiFe atomic concentration was varied between 15% and 40%. These alloys consist of small magnetic particles (Ni80Fe20) embedded in a nonmagnetic matrix (Ag). The structures of these alloys were investigated by X-ray diffraction, scanning electron microscopy and high-resolution cross-section transmission electron microscopy. The magnetic measurements were made using SQUID magnetometry and ferromagnetic resonance. Magnetoresistance was measured with a conventional four-point probe between 1.5 K and room temperature in field range 0–6T. Three contributions to the magnetoresistance of these granular alloys have been clearly identified: the spin-valve (or giant) magnetoresistance as in multilayers, scattering on magnetic fluctuations (as in any ferromagnetic metal around its magnetic ordering temperature), and anisotropic magnetoresistance. These three contributions have their own dependences on the size of the magnetic particles, on the degree of intermixing between Ni80Fe20 and Ag, and on temperature. We discuss the different shapes and amplitudes of magnetoresistance versus Ni80Fe20 concentration or temperature and their evolution upon annealing in terms of the relative roles of these three contributions. The magnetoresistance in multilayers (current in-plane or perpendicular to the plane) and granular alloys are also compared.  相似文献   

10.
Yong Zhang 《中国物理 B》2022,31(3):37102-037102
The binary pnictide semimetals have attracted considerable attention due to their fantastic physical properties that include topological effects, negative magnetoresistance, Weyl fermions, and large non-saturation magnetoresistance. In this paper, we have successfully grown the high-quality V1-δSb2 single crystals by Sb flux method and investigated their electronic transport properties. A large positive magnetoresistance that reaches 477% under a magnetic field of 12 T at T = 1.8 K was observed. Notably, the magnetoresistance showed a cusp-like feature at the low magnetic fields and such feature weakened gradually as the temperature increased, which indicated the presence of a weak antilocalization effect (WAL). In addition, based upon the experimental and theoretical band structure calculations, V1-δSb2 is a research candidate for a flat band.  相似文献   

11.
徐洁  焦吉庆  李强  李山东 《中国物理 B》2017,26(1):10701-010701
A special Fe_3O_4nanoparticles–graphene(Fe_3O_4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe_3O_4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization M_S of approximately 48 emu/g, coercivity H_C of 200 Oe, and remanence M_r of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe_3O_4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe_3O_4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.  相似文献   

12.
田英  申世鹏  丛君状  闫丽琴  柴一晟  孙阳 《中国物理 B》2016,25(1):17601-017601
The hybrid metal–organic framework [(CH3)2NH2]Fe(HCOO)3with a perovskite-like structure exhibits a variety of unusual magnetic behaviors at low temperatures. While the long-distance super-exchange through the Fe-O–CH-O–Fe exchange path leads to a canted antiferromagnetic ordering at TN~ 19 K, a second transition of magnetic blocking develops at TB~ 9 K. The stair-shaped magnetization hysteresis loops below TBresemble the behaviors of resonant quantum tunneling of magnetization in single-molecular quantum magnets. Moreover, the magnetic relaxation also exhibits several features of resonant quantum relaxation, such as the exponential law with a single characteristic relaxation time, and the nonmonotonic dependence of relaxation rate on the applied magnetic field with a much faster relaxation around the resonant fields. The origin of quantum tunneling behaviors in the [(CH3)2NH2]Fe(HCOO)3metal–organic framework is discussed in terms of magnetic phase separation due to the modification of hydrogen bonding on the long-distance super-exchange interaction.  相似文献   

13.
The magnetoresistance in the system of quantum dots with hopping conduction and filling factor 2 < ν < 3 in the limit of small quantum dots has been considered. In this case, hopping conduction is determined by p states. It has been shown that the system exhibits negative magnetoresistance associated with a change in the wavefunctions of p states in a magnetic field. This mechanism of magnetoresistance is linear in magnetic field in a certain range of fields and can compete with the known interference mechanism of magnetoresistance. The magnitude of this magnetoresistance is independent of the temperature at fairly low temperatures and increases with a decrease in the size of a quantum dot.  相似文献   

14.
A large positive magnetoresistance (MR) has been found in micro-sized Fex–C1−x composites. At a magnetic field of 5 T, the Fe0.2–C0.8 composite has the largest MR, 53.8% and 190% at room temperature and at 5 K, respectively. The magnetic field dependence of the MR can be described approximately as MR∝Bn, and the value of exponent n is determined by the Fe weight concentration and temperature, ranging from 1/4 to 6/4. It appears that Fex–C1−x has a linear field dependence of the positive MR at different temperatures. The possible mechanism for the positive MR is discussed.  相似文献   

15.
Anomalous magnetotransport phenomena have been observed in θ-(BEDT-TTF)2I3 crystals at temperatures below 15 K. The magnetoresistance M : (1) is a linear function of the magnetic field H, (2) is not affected by the angle between the electric current and the magnetic field, (3) but depends on the magnetic field orientation with respect to the crystal axis. Magnetoresistance is expressed as M = (aH2a + bH2b + cH2c)0-3/2/H in terms of H = (Ha, Hb, Hc), the zero field resistivity 0, and parameters a, b, and c which are independent of temperature and magnetic field. We have found that b a > c. Magnetoresistance up to 40 is observed for H = 7T along the b-axis at T = 1.5K.  相似文献   

16.
Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.  相似文献   

17.
We explore the extreme quantum limit of photogenerated electrons in quantum paraelectric SrTiO3. This regime is distinct from conventional semiconductors, due to the large electron effective mass and large dielectric constant. At low temperature, the magnetoresistance and Hall resistivity saturate at a high magnetic field, deviating from conventional behavior. As a result, the Hall coefficient vanishes on the scale of the ratio of the Landau level splitting to the thermal energy, indicating the essential role of lowest Landau level occupancy, as limited by thermal broadening.  相似文献   

18.
A systematic study of the magnetic hysteresis in transport properties of polycrystalline YBa2Cu3O7−δ–Ag compounds has been made based on two kinds of measurements at 77 K and under applied magnetic fields up to 30 mT: critical current density Jc(Ba) and magnetoresistance R(Ba). The R(Ba) curves show a minimum in their decreasing branch occurring at B=Bmin which was found to be both the excitation current Iex and the maximum applied magnetic field Bam dependent. In addition, for a certain value of Bam>5 mT, we have observed that Bmin increases with increasing Iex and reaches a saturation value. The Jc(Ba) curves show a maximum in decreasing applied magnetic fields occurring at B=Bmax. We have also found that Bmax increases with increasing Bam and reaches a saturation value. The minimum in the R(Ba) and the maximum in Jc(Ba) curves were found to be related to the trapped flux within the grains. All the experimental results are discussed within the context of the flux dynamics and transport mechanisms in these high-Tc materials.  相似文献   

19.
刘恩华  陈钊  温晓莉  陈长乐 《物理学报》2016,65(11):117701-117701
界面效应在提升异质结构材料的多铁性能方面有着重要的作用. 本文采用脉冲激光沉积技术在SrTiO3(STO)基片上制备了Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO)异质结. X-射线衍射图谱表明异质结呈现单相外延生长, 利用高分辨透射电镜进一步证实了BBFO为四方相结构. X-射线光电子能谱证实异质结中只存在Fe3+ 离子, 没有产生价态的变化, 揭示了异质结铁电和铁磁性的增强与BBFO/LSMO的界面有关. 同时, 测试了磁电阻(MR)和磁介电(MD), 当磁场强度为0.8 T, 温度为70 K时, MR约为-42.2%, MD约为21.2%. 并且发现在180 K时出现磁相的转变. 实验结果揭示出异质界面效应在提升材料的多铁性和磁电耦合效应方面具有超常的优点, 是加快多铁材料实际应用的有效途径.  相似文献   

20.
The magnetotransport in a nondegenerate quasi-one-dimensional (Q1D) electron system over superfluid helium has been investigated experimentally. The measurements are performed in the presence of a perpendicular magnetic field B up to 2.6 T in the temperature range T=0.48–2.05 K in the system of conducting channels of 100–400 nm width. It is shown that the value of longitudinal magnetoresistance ρxx increases with B. In the electron-gas scattering region (T>0.9 ), the behaviour of ρxx agrees with classical Drude law. In the quantum transport regime, the self-consistent Born approximation (SCBA) theory for a 2D electron system over liquid helium describes the experimental data qualitatively. The deviation due to the difference of the experimentally studied Q1D system of the electrons in a parabolic potential well differs from theoretically analysed one. The experimental data agree with the theoretical calculation for the Q1D electron system at the weak magnetic field and the low temperature.

The negative magnetoresistance of the conducting channels has been observed in both the gas- and the ripplon-scattering region. These effects have been explained by weak carrier localization on the gas atoms at high temperature and by display of the quantum magnetotransport features in a mesoscopic system at low temperature.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号