首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuiyuan Tian 《中国物理 B》2023,32(1):17306-017306
A vertical junction barrier Schottky diode with a high-$K$/low-$K$ compound dielectric structure is proposed and optimized to achieve a high breakdown voltage (BV). There is a discontinuity of the electric field at the interface of high-$K$ and low-$K$ layers due to the different dielectric constants of high-$K$ and low-$K$ dielectric layers. A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode (JBS), so the distribution of electric field in JBS becomes more uniform. At the same time, the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-$K$ dielectric layer and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN JBS with a specific on-resistance ($R_{\rm on, sp}$) of 2.07 m$\Omega\cdot$cm$^{2}$ and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure, resulting in a high figure-of-merit (FOM) of 8.6 GW/cm$^{2}$, and a low turn-on voltage of 0.6 V.  相似文献   

2.
蒲红斌  曹琳  陈治明  仁杰  南雅公 《中国物理 B》2010,19(10):107101-107101
This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H-SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 mΩ·cm 2 and breakdown voltage increases 422 V with an additional floating junction for the given structure.  相似文献   

3.
In this paper,a 4H-SiC semi-superjunction (SJ) Schottky barrier diode is analysed and simulated.The semi-SJ structure has an optimized design and a specific on-resistance lower than that of conventional SJ structures,which can be achieved without increasing the process difficulty.The simulation results show that the specific on-resistance and the softness factor depend on the aspect and thickness ratios,and that by using the semi-SJ structure,specific on-resistance can be reduced without decreasing the softness factor.It is observed that a trade-off exists between the specific on-resistance and the softness of the diode.  相似文献   

4.
曹琳  蒲红斌  陈治明  臧源 《中国物理 B》2012,21(1):17303-017303
In this paper, a 4H-SiC semi-superjunction (SJ) Schottky barrier diode is analysed and simulated. The semi-SJ structure has an optimized design and a specific on-resistance lower than that of conventional SJ structures, which can be achieved without increasing the process difficulty. The simulation results show that the specific on-resistance and the softness factor depend on the aspect and thickness ratios, and that by using the semi-SJ structure, specific on-resistance can be reduced without decreasing the softness factor. It is observed that a trade-off exists between the specific on-resistance and the softness of the diode.  相似文献   

5.
准垂直GaN肖特基势垒二极管(SBD)因其低成本和高电流传输能力而备受关注.但其主要问题在于无法很好地估计器件的反向特性,从而影响二极管的设计.本文考虑了GaN材料的缺陷以及多种漏电机制,建立了复合漏电模型,对准垂直Ga N SBD的特性进行了模拟,仿真结果与实验结果吻合.基于此所提模型设计出具有高击穿电压的阶梯型场板结构准垂直GaN SBD.根据漏电流、温度和电场在反向电压下的相关性,分析了漏电机制和器件耐压特性,设计的阶梯型场板结构准垂直GaN SBD的Baliga优值BFOM达到73.81 MW/cm~2.  相似文献   

6.
GaN基肖特基势垒二极管结构优化研究进展   总被引:1,自引:1,他引:1       下载免费PDF全文
作为宽禁带半导体器件,GaN基肖特基势垒二极管(SBD)有耐高压、耐高温、导通电阻小等优良特性,这使得它在电力电子等领域有广泛应用。本文首先综述了SBD发展要解决的问题;然后,介绍了GaN SBD结构、工作原理及结构优化研究进展;接下来,总结了AlGaN/GaN SBD结构、工作原理及结构优化研究进展,并着重从AlGaN/GaN SBD的外延片结构、肖特基电极结构以及边缘终端结构等角度,阐述了这些结构的优化对AlGaN/GaN SBD性能的影响;最后,对器件进一步的发展方向进行了展望。  相似文献   

7.
The effect of oxygen plasma treatment on the performance of GaN Schottky barrier diodes is studied. The GaN surface is intentionally exposed to oxygen plasma generated in an inductively coupled plasma etching system before Schottky metal deposition. The reverse leakage current of the treated diodes is suppressed in low bias range with enhanced diode ideality factor and series resistance. However, in high bias range the treated diodes exhibit higher reverse leakage current and corresponding lower breakdown voltage. The X-ray photoelectron spectroscopy analysis reveals the growth of a thin GaOx layer on GaN surface during oxygen plasma treatment. Under sub-bandgap light illumination, the plasma-treated diodes show larger photovoltaic response compared with that of untreated diodes, suggesting that additional defect states at GaN surface are induced by the oxygen plasma treatment.  相似文献   

8.
 提出了改进型的肖特基二极管整流数理模型,用加速迭代法和四阶精度龙格-库塔法编制了计算程序,并结合实验测量得到了整流效率与输入功率、频率和负载等关系曲线:负载一定时,输入功率从零开始增大,整流效率先快速上升,然后上升趋势变缓;输入功率一定时,负载从零开始增大,整流效率先增大后减小,对于某一固定的输入功率,存在着一个最佳负载值;当输入功率和负载都相同时,降低工作频率,整流效率上升。型号为2DV10B的X波段管子在负载为525 W、输入功率为10 mW、频率为3.2 GHz时获得的整流效率为75.2%;频率为10 GHz时获得50.2%的效率,实验测量结果与理论分析一致。  相似文献   

9.
In this paper, a mixed terminal structure for the 4H-SiC merged PiN/Schottky diode (MPS) is investigated, which is a combination of a field plate, a junction termination extension and floating limiting rings. Optimization is performed on the terminal structure by using the ISE-TCAD. Further analysis shows that this structure can greatly reduce the sensitivity of the breakdown voltage to the doping concentration and can effectively suppress the effect of the interface charge compared with the structure of the junction termination extension. At the same time, the 4H-SiC MPS with this termination structure can reach a high and stable breakdown voltage.  相似文献   

10.
This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination.  相似文献   

11.
A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm2 while the conventional one exhibits 8.20 mΩ cm2 due to the decrease of a forward voltage drop.  相似文献   

12.
Ji-Yao Du 《中国物理 B》2022,31(4):47701-047701
Effect of anode area on temperature sensing ability is investigated for a vertical GaN Schottky-barrier-diode sensor. The current-voltage-temperature characteristics are comparable to each other for Schottky barrier diodes with different anode areas, excepting the series resistance. In the sub-threshold region, the contribution of series resistance on the sensitivity can be ignored due to the relatively small current. The sensitivity is dominated by the current density. A large anode area is helpful for enhancing the sensitivity at the same current level. In the fully turn-on region, the contribution of series resistance dominates the sensitivity. Unfortunately, a large series resistance degrades the temperature error and linearity, implying that a larger anode area will help to decrease the series resistance and to improve the sensing ability.  相似文献   

13.
汤晓燕  戴小伟  张玉明  张义门 《物理学报》2012,61(8):88501-088501
4H-SiC浮动结结势垒肖特基二极管与常规结势垒肖特基二极管相比在 相同的导通电阻条件下具有更高的击穿电压. 由p+埋层形成的浮动结与主结p+区 之间的套刻对准是实现该结构的一项关键技术. 二维模拟软件ISE的模拟结果表明, 套刻偏差的存在会明显影响器件的击穿特性, 随着偏差的增大击穿电压减小. 尽管主结和埋层的交错结构与对准结构具有相似的击穿特性, 但是当正向电压大于2 V后, 交错结构的串联电阻更大.  相似文献   

14.
Wang Lin 《中国物理 B》2022,31(10):108105-108105
A novel junction terminal extension structure is proposed for vertical diamond Schottky barrier diodes (SBDs) by using an n-Ga2O3/p-diamond heterojunction. The depletion region of the heterojunction suppresses part of the forward current conduction path, which slightly increases the on-resistance. On the other hand, the reverse breakdown voltage is enhanced obviously because of attenuated electric field crowding. By optimizing the doping concentration, length, and depth of n-Ga2O3, the trade-off between on-resistance and breakdown voltage with a high Baliga figure of merit (FOM) value is realized through Silvaco technology computer-aided design simulation. In addition, the effect of the work functions of the Schottky electrodes is evaluated. The results are beneficial to realizing a high-performance vertical diamond SBD.  相似文献   

15.
《Current Applied Physics》2014,14(3):491-495
Wet chemical passivation of n-GaN surface was carried out by dipping GaN samples in ammonium sulphide diluted in aqueous and alcoholic solvent base solutions. Photoluminescence (PL) investigations indicated that sulphide solution effectively led to the reduction of GaN surface states. Increased band edge PL peak showed that S2− ions are more active in alcohol based solvents. X-ray photoelectron spectroscopy revealed reduction in surface oxides by introduction of sulphide species. Ni/n-GaN Schottky barrier diodes were fabricated on passivated surfaces. Remarkable improvement in the Schottky barrier height (0.98 eV for passivated diodes as compared to 0.75 eV for untreated diodes) has been observed.  相似文献   

16.
17.
Xiaoyu Liu 《中国物理 B》2023,32(1):17305-017305
A high-performance terahertz Schottky barrier diode (SBD) with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper. Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer, by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified. The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area. Compared with the normal structure, the grading coefficient M increases from 0.47 to 0.52, and the capacitance modulation ratio (Cmax/Cmin) increases from 6.70 to 7.61. The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge. A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35% compared to that 30% of a normal SBD.  相似文献   

18.
Based on Quantum Mechanical (QM) carrier transport and the effects of interface states, a theoretical model has been developed to predict the anomalous current-voltage (I-V) characteristics of a non-ideal Ni-silicided Schottky diode at low temperatures. Physical parameters such as barrier height, ideality factor, series resistance and effective Richardson constant of a silicided Schottky diode were extracted from forward I-V characteristics and are subsequently used for the simulation of both forward and reverse I-V characteristics using a QM transport model in which the effects of interface state and bias dependent barrier reduction are incorporated. The present analysis indicates that the effects of barrier inhomogeneity caused by incomplete silicide formation at the junction and the interface states may change the conventional current transport process, leading to anomalous forward and reverse I-V characteristics for the Ni-silicided Schottky diode.  相似文献   

19.
刘红侠  吴笑峰  胡仕刚  石立春 《中国物理 B》2010,19(5):57303-057303
Current transport mechanism in Ni-germanide/n-type Ge Schottky diodes is investigated using current--voltage characterisation technique with annealing temperatures from 300~\duto 500~\du. Based on the current transport model, a simple method to extract parameters of the NiGe/Ge diode is presented by using the $I$--$V$ characteristics. Parameters of NiGe/n-type Ge Schottky diodes fabricated for testing in this paper are as follows: the ideality factor $n$, the series resistance $R_{\rm s}$, the zero-field barrier height $\phi _{\rm b0}$, the interface state density $D_{\rm it}$, and the interfacial layer capacitance $C_{\rm i}$. It is found that the ideality factor $n$ of the diode increases with the increase of annealing temperature. As the temperature increases, the interface defects from the sputtering damage and the penetration of metallic states into the Ge energy gap are passivated, thus improving the junction quality. However, the undesirable crystallisations of Ni-germanide are observed together with NiGe at a temperature higher than 400~\du. Depositing a very thin ($\sim $1~nm) heavily Ge-doped $n^{+}$ Ge intermediate layer can improve the NiGe film morphology significantly.  相似文献   

20.
In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher {on-state} current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel case. The 50~nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e~V (for ErSi) and the bottom barrier is 0.6eV (for CoSi2. Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2mA/μm at Vds=1V, Vgs=2V) and the high Ion/Imin ratio (106) are both achieved by applying the SSDOM structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号