首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用多参考态方法, 在CASPT2//CASSCF/6-311+G(2df, 2p) 水平上计算了乙醇醛(HOCH2CHO)分子在三个最低电子态(S0、S1和T1)上驻点的电子结构和解离势能面。结合势能面交叉点,探讨了HOCH2CHO与波长有关的光解离机理,分析了可能的光解离产物。结果表明, 在实验光解波长240 – 400 nm的激发下,HOCH2CHO分子主要发生S1态上的解离反应或通过S0和S1态之间的振动相互作用驰豫到基态,随之发生基态解离反应。C-C键断裂生成基态光解产物HOCH2 (2A′)+ HCO (2A′)是最主要的反应途径;而在一定波长下,生成CH3OH + CO的基态协同反应、脱醛基氢及脱羟基通道都是能量上可行的反应途径。本文的计算结果和实验观察一致。  相似文献   

2.
Photodissociation of HOBr is an important step in the reaction network of the depletion of ozone in stratosphere. Here, we report the first three-dimensional potential energy surfaces for the lowest three singlet states for HOBr, based on high level multi reference configuration interaction calculations. Quantum dynamics calculations are performed with a real wavepacket method, yielding not only absorption spectra but also internal state and angular distributions of the photodissociation fragments. Our results agree quantitatively with the measured total absorption cross sections of HOBr in the ultraviolet region and reproduce well the observed vibrationally cold and rotationally hot OH/OD fragments via photodissociation of HOBr/DOBr at 266 nm. In addition, we predict that the recoil anisotropy parameters for OH/OD are close to the limiting value of a parallel transition, suggesting a rapid dissociation process at 266 nm following an in-plane transition from the ground state (1\begin{document}$^1$\end{document}A\begin{document}$'$\end{document}) to the 2\begin{document}$^1$\end{document}A\begin{document}$'$\end{document} state. This is consistent with the experimental conclusion derived from the measured rotational alignment. However, spin and electronic angular momenta need to be taken into account in the future to achieve a more quantitative agreement with experiment. Our work is expected to motivate further experimental investigations for this benchmark system.  相似文献   

3.
利用共振增强多光子电离飞行时间质谱(REMPI-TOFMS),研究了长链正一溴代烷烃R_Br(R为正烷烃基)(C2H5Br,n-C3H7Br,n-C4H9Br)在234及267nm附近的光解动力学.溴碎片来源于R_Br的直接解离:R_Br→R+Br(2P3/2)/Br*(2P1/2).根据测定的离子信号强度,得到了Br*与Br的分支比N(Br*)/N(Br)及相应的相对量子产额(Br*)和(Br).(Br*)与激光波长及分子结构显示了一定的依赖关系.将实验结果用CH3Br的解离模型进行拟合,得到了长链R_Br的光解动力学行为的定性解释.  相似文献   

4.
采用多参考态方法,在MRCI+Q//CAS(10,9)/6-311+G(2df)水平上对叠氮化氰(N3CN)的光解离机理进行理论研究.优化得到基态(S0)和低激发态(S1、S2、T1)势能面上的极小点、过渡态、内转换交叉点(IC-S1/S0)和隙间窜跃交叉点(ISC-S1/T1)的结构和能量,构建反应势能面.在MRCI+Q//CAS(10,9)水平上计算N3CN的垂直激发能,并和实验值进行对比.结果表明,在S0、S1、S2和T1态势能面上,N—N键断裂生成N2+NCN是主要解离途径,而C—N键断裂通道是次要通道.实验观测到220 nm处的吸收峰对应分子由S0态到S1态的激发,对应主要光解离产物为NCN[a1△g];而在275 nm处的吸收峰则对应分子被激发到T1态,然后直接生成基态产物NCN[X3Σg-].我们的理论结果与实验测量符合得很好.  相似文献   

5.
Ab initio CCSD(T)/CBS//B3LYP/6-311G(d, p) calculations of the potential energy surface for possible dissociation channels of HOC\begin{document}$_2$\end{document}H\begin{document}$_3$\end{document}F, as well as Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of rate constants, were carried out, in order to predict statistical product branching ratios in dissociation of HOC\begin{document}$_2$\end{document}H\begin{document}$_3$\end{document}F at various internal energies. The most favorable reaction pathway leading to the major CH\begin{document}$_2$\end{document}CHO+HF products is as the following: OH+C\begin{document}$_2$\end{document}H\begin{document}$_3$\end{document}F\begin{document}$\rightarrow$\end{document}i2\begin{document}$\rightarrow$\end{document}TS14\begin{document}$\rightarrow$\end{document}i6\begin{document}$\rightarrow$\end{document}TS9\begin{document}$\rightarrow$\end{document}i3\begin{document}$\rightarrow$\end{document}TS3\begin{document}$\rightarrow$\end{document}CH\begin{document}$_2$\end{document}CHO+HF, where the rate-determining step is HF elimination from the CO bridging position via TS11, lying above the reactants by 3.8 kcal/mol. The CH\begin{document}$_2$\end{document}O+CH\begin{document}$_2$\end{document}F products can be formed by F atom migration from C\begin{document}$_\beta$\end{document} to C\begin{document}$_\alpha$\end{document} position via TS14, then H migration from O to C\begin{document}$_\alpha$\end{document} position via TS16, and C-C breaking to form the products via TS5, which is 1.8 kcal/mol lower in energy than the reactants, and 4.0 kcal/mol lower than TS11.  相似文献   

6.
Complex-forming reactions widely exist in gas-phase chemical reactions.Various complexforming bimolecular reactions have been investigated and interesting phenomena have been discovered.The complex-forming reactions usually have small or no barrier in the entrance channel, which leads to obvious differences in kinetic and dynamic characteristics compared with direct reactions.Theoretically, quantum state-resolved reaction dynamics can provide the most detailed microscopic dynamic mechanisms and is now feasible for a direct reaction with only one potential barrier.However, it is of great challenge to construct accurate potential energy surfaces and perform accurate quantum dynamics calculations for a complex polyatomic reaction involving deep potential wells and multi-channels.This paper reviews the most recent progress in two prototypical oxyhydrogen complex-forming reaction systems, HO2 and HO3, which are significant in combustion, atmospheric, and interstellar chemistry.We will present a brief survey of both computational and experimental work and emphasize on some unsolved problems existing in these systems.  相似文献   

7.
Photodissociation of jet-cooled HOD via the ? state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translational energy distribution spectra have been recorded for both D+OH and H+OD dissociation channels. Product channel OH/OD branching ratios for the individual ?- X rotational transition have been determined. A comparison is also given with the B- X and ?- X transitions. In addition, the dissociation energy of the OD bond in HOD has been determined accurately to be 41751.3±5 cm-1.  相似文献   

8.
采用CCSD(T)/6-311++G(3df, 2pd)//B3LYP/6-311+G(2df, 2p)双水平计算方法构建了HO2+HS反应体系的单、三重态反应势能面,并对该反应主通道的速率常数进行了研究。研究结果表明,标题反应经历了八条反应通道,其中三重态反应通道R1是标题反应主通道。此通道包含路径Path 1 (R → 3IM1 → 3TS1 → P1(3O2+H2S))和Path 1a (R → 3IM1a → 3TS1a → P1(3O2+H2S))两条路径。利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了主路径Path 1和Path 1a在200-800 K温度范围内的速率常数kTSTkCVTkCVT/SCT,在此温度区间内路径Path 1和Path 1a具有负温度系数效应。速率常数计算结果显示,对主路径Path 1和Path 1a而言,变分效应在计算温度段内有一定影响,与此同时量子力学隧道效应在低温段有显著影响。路径Path 1和Path 1a的CVT/SCT速率常数的三参数表达式分别为k1CVT/SCT(200-800 K) = 1.54×10-5T-2.70exp(1154/T) cm3 ·molecule-1·s-1k1aCVT/SCT(200-800 K) = 5.82×10-8T-1.84exp(1388/T) cm3·molecule-1·s-1。  相似文献   

9.
Extensive quasiclassical trajectory calculations for the O(1D)+CD4 multichannel reaction were carried out on a new global potential energy surface fit by permutationally invariant polynomials. The product branching ratios, translational energy distributions, and angular distributions of OD+CD3, D+CD2OD/CD3O, and D2+DCOD/D2CO product channels were calculated and compared with the available experimental results. Good agreement between theory and experiment has been achieved, indicating small isotope effects for the title reaction. The O(1D)+CD4 reaction mainly proceeds through the CD3OD intermediate via the trapped abstraction mechanism, with initial abstraction of the D atom rather than the direct insertion, followed by decomposition of CD3OD into various products.  相似文献   

10.
The potential energy surface of O(1D) + CH3CH2F reaction has been studied using QCISD(T)/6-311++G(d,p)//MP2/6-311G(d,p) method. The calculations reveal an insertion–elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) atom inserting into C–F bond of CH3CH2F produces one energy-rich intermediate CH3CH2OF and another is the O(1D) atom inserting into one of the C–H bonds of CH3CH2F produces two energy-rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25 and 30 kcal/mol. CH3CH2O is the main decomposition product of CH3CH2OF. HF and CH3 are the main decomposition products for IM1; CH2OH is the main decomposition product for IM2. Since IM1 is more stable and more likely to form than CH3CH2OF and IM2, HF and CH3 are probably the main products of the O(1D) + CH3CH2F reaction. Our computational results can give insight to reaction mechanism and provide probable explanations for future experiments.  相似文献   

11.
The complex potential energy surface and reaction mechanisms for the unimolecular isomerization and decomposition of methyl-nitramine (CH3NHNO2) were theoretically probed at the QCISD(T)/6-311+G*//B3LYP/6-311+G* level of theory. The results demonstrated that there are four low-lying energy channels: (i) the NN bond fission pathway; (ii) a sequence of isomerization reactions via CH3NN(OH)O; (IS2a); (iii) the HONO elimination pathway; (iv) the isomerization and the dissociation reactions via CH3NHONO (IS3). The rate constants of each initial step (rate-determining step) for these channels were calculated using the canonical transition state theory. The Arrhenius expressions of the channels over the temperature range 298-2000 K are k6(T)=1014:8e-46:0=RT , k7(T)=1013:7e-42:1=RT , k8(T)=1013:6e-51:8=RT and k9(T)=1015:6e-54:3=RT s-1, respectively. The calculated overall rate constants is 6.9£10-4 at 543 K, which is in good agreement with the experimental data. Based on the analysis of the rate constants, the dominant pathway is the isomerization reaction to form CH3NN(OH)O at low temperatures, while the NN bond fission and the isomerization reaction to produce CH3NHONO are expected to be competitive with the isomerization reaction to form CH3NN(OH)O at high temperatures.  相似文献   

12.
The reaction of N2O with CO, catalyzed by Fe+(C6H6) and producing N2 and CO2, has been investigated at the UB3LYP/6-311+G(d) level. The computation results revealed that the reaction of Fe+(C6H6), N2O and CO, is an O-atom abstraction mechanism. For the reaction channels, the geometries and the vibrational frequencies of all species have been calculated and the frequency modes analysis also have been given to elucidate the reaction mechanism. On the basis for geometry optimizations, the thermodynamic data of these reactions channels have been calculated using the statistical theory at 295.15 K and pressure of 0.35 Torr. Using Eyring transition state theory with Wigner correction, the activation thermodynamic data, rate constant and frequency factors for the these reaction channels also have been given. The results showed that CO and N2O do not react without catalyst and Fe+(C6H6) can excellently mediate the reaction of N2O and CO.  相似文献   

13.
The H+CH\begin{document}$ _3 $\end{document}OH reaction, which plays an important role in combustion and the interstellar medium, presents a prototypical system with multiple channels. In this work, mode specific dynamics of different product channels is investigated theoretically on a recently developed reliable potential energy surface based on a large number of data points calculated at the level of UCCSD(T)-F12a/AVTZ. It has been demonstrated that vibrational excitations of the O\begin{document}$ - $\end{document}H stretching motion, the torsional motion, the C\begin{document}$ - $\end{document}H stretching vibrations, show different influences on the four product channels, H\begin{document}$ _2 $\end{document}+CH\begin{document}$ _3 $\end{document}O, H\begin{document}$ _2 $\end{document}+CH\begin{document}$ _2 $\end{document}OH, H\begin{document}$ _2 $\end{document}O+CH\begin{document}$ _3 $\end{document}, and H+CH\begin{document}$ _3 $\end{document}OH. This work is helpful for understanding the mode-specific dynamics and controlling the competition for complicated reactions with multiple product channels.  相似文献   

14.
The dynamics properties of the hydrogen abstraction reaction CF3O+CH4→CF3OH+CH3 are studied by dual-level direct dynamics method. Optimization calculations are preformed by B3LYP and MP2 with the 6-311G(d,p) basis set, and the single-point calculations are done at the multi-coefficient correction method based on quadratic configuration interaction with single and double excitations (MC-QCISD) method. The rate constants are evaluated by canonical variational transition-state theory with a small-curvature tunneling correction over a wide range of temperature 200–2000 K. The agreement between theoretical and experimental rate constants is good in the measured temperature range. The calculated results show that the variational effect is small and almost neglected over the whole temperature range, whereas, the tunneling correction plays a role in the lower temperature range. The kinetic isotope effect for the reaction is ‘normal’. The value of kH/kD is 2.38 at room temperature and it decreases with the temperature increasing.  相似文献   

15.
The reaction of HO2NO2 (peroxynitric acid, PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods. Based on the calculated potential energy surface, five reaction channels, H2O+NO2+O2, HOOH+NO3, NO2+HO3H, HO2+HONO2 and HO2+HOONO, were examined in detail. The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2. Taking a pre-equilibrium approximation and using the CBS-QB3 energies, the theoretical rate constant of this channel was calculated as 1.13×10-12 cm3/(molecule s) at 300 K, in agreement with the experimental result. Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions, the total rate constants increase from R=NO2 to R=ONO2, which is consistent with experimental measurements.  相似文献   

16.
实验发现,在光引发BrC2F4Br+C2F4调聚反应中,光强(或光功率密度)能影响产品分布。提出了反应机理:此反应由加成反应与复合反应组成,而链转移反应可忽略.由此进行了动力学计算,为与实验结果吻合,拟合得的加成反应BrC2F4+C2F4的速率常数为(2±1)×107cm3•mol-1•s-1,Br(C2F4)n≧2+C2F4的速率常数为(1.2±0.4)×107Cm3•mol-1•s-1  相似文献   

17.
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dichloro-germylene carbene and formaldehyde has been investigated with CCSD(T)//MP2/6-31G* method, from the potential energy profile, we predict that the re-action has two competitive dominant reaction pathways. The presented rule of this reaction: the 2p unoccupied orbital of the C atom in dichloro-germylene carbene insert the π orbital of formaldehyde from oxygen side, resulting in the formation of intermediate. In the interme-diate and between two reactants, because of the two bonding π orbital in dichloro-germylene carbene and formaldehyde have occurred [2+2] cycloaddition reaction, forming two four-membered ring compounds in which Ge and O are in the opposite orientation and in the syn-position, respectively. Because of the unsaturated property of C atom from carbene in the two four-membered ring compounds, they further reacts with formaldehyde, resulting in the generation of two germanic bis-heterocyclic compounds.  相似文献   

18.
The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atmosphere due to the high activated energy of 88.7 kJ/mol at the G3 level of theory. However, the computed results predict that the barrier for unimolecular decomposition of CF3OH is decreased to 25.1 kJ/mol from 188.7 kJ/mol with the aid of NH3 at the G3 level of theory, which shows that the ammonia play a strong catalytic effect on the split of CF3OH. In addition, the calculated rate constants show that the decomposition of CF3OH by NH3 is faster than those of H2O and the water dimmer by 109 and 105 times respectively. The rate constants combined with the corresponding concentrations of these species demonstrate that the reaction CF3OH with NH3 via TS4 is of great importance for the decomposition of CF3OH in the atmosphere.  相似文献   

19.
The reactivity of Ni+ with OCS on both doublet and quartet potential energy surfaces (PES) has been investigated at the B3LYP/6-311+G(d) level. The object of this investigation was the elucidation of the reaction mechanism. The calculated results indicated that both the CS and CO bond activations proceed via an insertion–elimination mechanism. Intersystem crossing between the doublet and quartet surfaces may occur along both the CS and CO bond activation branches. The ground states of NiS+ and NiO+ were found to be quartets, whereas NiCO+ and NiCS+ have doublet ground states. The CS bond activation is energetically much more favorable than the CO bond activation. All theoretical results are in line with early experiments.  相似文献   

20.
The reactivity of Cu+ with OCS on both singlet and triplet potential energy surfaces (PES) has been investigated at the UB3LYP/6-311+G(d) level. The object of this investigation was the elucidation of the reaction mechanism. The calculated results indicated that both the C–S and C–O bond activations proceed via an insertion–elimination mechanism. Intersystem crossing between the singlet and triplet surfaces may occur along both the C–S and C–O bond activation branches. The ground states of CuS+ and CuO+ were found to be triplets, whereas CuCO+ and CuCS+ have singlet ground states. The C–S bond activation is energetically much more favorable than the C–O bond activation. All theoretical results are in line with early experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号