首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于Bogoliubov-de Gennes方程和Blonder-Tinkham-Klapwijk理论研究了三维拓扑绝缘体基铁磁/各向异性f-波超导隧道结的Andreev反射,其中f-波超导体选取f1和f2-波两种配对势.研究发现,对于f1和f2波,铁磁体中的磁能隙可以增强传统的Andreev逆向反射,但对Andreev镜面反射有抑制作用;但随着施加在超导体顶部电极上的栅极电位的增加,两种类型的反射都会增强.通过改变磁能隙,可以调节两种反射在准粒子输运过程中占有优势的程度.这些结果提供了一种实验检测拓扑绝缘体薄膜中镜面Andreev反射的方法.此外,隧穿电导和散粒噪声谱的差异可用于区分f1和f2波配对势.  相似文献   

2.
The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov–de Gennes equations in the framework of Blonder–Tinkham–Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.  相似文献   

3.
The tunneling conductance on the surface of a topological-insulator-based ferromagnet/superconductor (F/S) structure is studied where S is an s-wave superconductor with superconducting order parameter ∼Δ. The conductance is calculated based on the BTK formalism. The magnetization in F is applied along the z-direction () in order to induce the energy-mass gaps (m) for the Dirac electrons in the F-region. In this work, the influence of energy gap due to the magnetic field in the F-region on the conductance is emphasized. The Fermi energy mismatch between F (EFF=EF) and S (EFS=EF+U), where the gate potential U is applied to the electrode on top of S, is also considered. As a result, a biased voltage V can cause the conductance switch at eV=Δ, depending on the value of the magnetic field. The conductance is found to be linearly dependent on either m or U. The slope of the curve can also be adjusted. This linear behavior in a topological-insulator-based F/S structure may be valuable for electronic applications of the linear-control-current devices. The tunneling conductances of the quasi-Dirac-particle in a topological-insulator-based F/S junction are quite different from those of a graphene-based F/S junction.  相似文献   

4.
The tunneling conductance in topological insulator (TI) ferromagnet/p-wave superconductor (FM/pS) junction is studied based on the Blonder–Tinkham–Klapwijk (BTK) theory. The Fermi energy mismatch between FM and pS as well as the finite quasiparticle lifetime are considered. Three kinds of pairings px, py, and px+ipy-waves for pS are chosen. It is found that the spectrum strongly depend on the magnetic gap, the gate potential, the quasiparticle lifetime as well as the type of the pair potential symmetry. The pair potential symmetry drastically affects the formation of the zero-energy bound states dependent on the magneto effect or the Fermi energy mismatch effect. The finite quasiparticle lifetime effect can suppress the Andreev resonant scattering process at eV=Δ0 and smear the dips in the conductance.  相似文献   

5.
R Vali  M Vali 《J Phys Condens Matter》2012,24(32):325702, 1-325702, 6
We investigate the tunneling conductance in a normal metal/insulator/d-wave superconductor (NM/I/d-wave SC) junction with a barrier of thickness d and with an arbitrary gate voltage V(0) applied across the barrier region, formed on the surface of a topological insulator, using the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk?(BTK) formalism. We find that the tunneling conductance as a function of both d and V(0) displays an oscillatory behavior whose amplitude decreases with increase of V(0). We also find that when the Andreev resonant condition is met, the tunneling conductance approaches a maximum value of 2G(0), independent of the gate voltage V(0).  相似文献   

6.
徐茂杰  窦晓鸣 《中国物理 B》2010,19(6):67301-067301
This paper theoretically studies Josephson spin current through triplet superconductor/ferromagnet/triplet superconductor junctions. At the ferromagnet/superconductor interfaces, the ferromagnetic scattering potential gives rise to coupling between the Andreev bound states and lifts their spin degeneracy. These spin-split Andreev states carry the Josephson spin current through the junctions. The generated spin supercurrent can be controlled by the magnetization of a ferromagnetic thin layer and bias voltage across the junctions.  相似文献   

7.
刘乃清  黄立捷  王瑞强  胡梁宾 《中国物理 B》2016,25(2):27201-027201
We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.  相似文献   

8.
运用拓展的BTK理论研究了拓扑绝缘层上铁磁/铁磁超导隧道结的磁效应和塞曼效应,同时考虑了铁磁体和铁磁超导体之间的费米能级错配效应.研究发现:在该系统中塞曼效应和邻近效应可以共存;铁磁体和铁磁超导体之间的费米能级错配效应能够增强系统中发生在eV=Δ处的Andreev谐振散射过程和邻近效应.  相似文献   

9.
10.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

11.
The Josephson effect in the superconductor/ferromagnet/superconductor (SFS) graphene Josephson junction is studied using the Dirac Bogoliubov-de Gennes (DBdG) formalism. It is shown that the SFS graphene junction drives 0–π transition with the increasing of p=h0L/vF?, which captures the effects of both the exchange field and the length of the junction; the spin-down current is dominant. The 0 state is stable for p 〈 pc (critical value pc ≈ 0.80) and the π state is stable for p 〉 pc, where the free energy minima are at φg=0 and φg=π, respectively. The coexistence of the 0 and π states appears in the vicinity of pc.  相似文献   

12.
We have studied the tunneling conductance in ferromagnet/insulator/p-wave superconductor junctions, taking into account the rough interface scattering effect. We find that there exist zero-bias conductance peaks and single-minimum structure in tunneling spectroscopy. As the exchange energy increases, the Andreev reflection is always suppressed and the differential conductance decreases. The differential conductance depends on the barrier strength and the roughness at the interface. Supported by the Natural Science Foundation of Jiangsu Higher Education Institutions, China (Grant No. 06KJB140009)  相似文献   

13.
Charge transport in the normal metal/insulator/diffusive ferromagnet/insulator/s-wave superconductor (N/I/DF/I/S) junctions is studied for various situations solving the Usadel equation under the Nazarov's generalized boundary condition. Conductance of the junction is calculated by changing the magnitude of the resistance in DF, Thouless energy in DF, the exchange field in DF, the transparencies of the insulating barriers. We have found a new broad peak around zero voltage as well as zero bias conductance peak splitting and dip splitting.  相似文献   

14.
董正超 《中国物理》2005,14(6):1209-1216
在超导中通过外加塞曼磁场,研究正常金属/超导/正常金属双隧道结中的量子相干输运。同时考虑从一个正常金属电极注入一电子,从另一个正常金属电极注入一空穴,推导出系统的微分电导的一般公式。研究表明,电导谱随偏压展示振荡行为,随着温度和磁场的增大,其振荡振幅被降低,且塞曼能可导致电导峰的塞曼劈裂。在隧道极限下,超导体中会形成一系列束缚态。  相似文献   

15.
拓扑超导体自身具有对量子退相干天然的免疫性以及可编织性,这使得它在现代量子计算领域中受到了越来越多的重视,并且成为了下一代计算技术中最有希望的候选者之一。由于拓扑超导态在固有拓扑超导体中相当罕见,因此,当前大部分实验上的工作主要集中在由 s 波超导体与拓扑绝缘体之间通过近邻效应所诱导的拓扑超导体上。本论文中,我们回顾了基于拓扑绝缘体/超导体异质结的拓扑超导体的研究进展。在理论上,Fu 和 Kane 提出,通过近邻效应将 s 波超导体的能隙引入到拓扑绝缘体,可以诱导出拓扑超导电性。在实验上,我们也回顾了一些不同体系中的拓扑超导近邻效应的研究进展。文章的第一部分,我们介绍了一些异质结,包括:三维拓扑绝缘体 Bi2Se3和 Bi2Se3 与 s 波超导体NbSe2 以及 d 波超导体 Bi2Sr2CaCu2O8+δ 的异质结,拓扑绝缘体 Sn1−xPbxTe 与 Pb 的异质结,二维拓扑绝缘体 WTe2 与NbSe2 的异质结。此外,还介绍了 TiBiSe2 在 Pb 上的拓扑绝缘近邻效应。另一部分中,我们对基于拓扑绝缘体的约瑟夫森结进行了回顾,包括著名的基于 Fu-Kane 体系的拓扑绝缘体约瑟夫森结,以及基于约瑟夫森结的超导量子干涉器件。  相似文献   

16.
In the framework of the Dirac–Bogoliubov–de Gennes formalism, we investigate the transport properties in the surface of a 3-dimensional topological insulator-based hybrid structure, where the ferromagnetic and superconducting orders are simultaneously induced to the surface states via the proximity effect. The superconductor gap is taken to be spin-singlet d-wave symmetry. The asymmetric role of this gap respect to the electron–hole exchange, in one hand, affects the topological insulator superconducting binding excitations and, on the other hand, gives rise to forming distinct Majorana bound states at the ferromagnet/superconductor interface. We propose a topological insulator N/F/FS junction and proceed to clarify the role of d-wave asymmetry pairing in the resulting subgap and overgap tunneling conductance. The perpendicular component of magnetizations in F and FS regions can be at the parallel and antiparallel configurations leading to capture the experimentally important magnetoresistance (MR) of junction. It is found that the zero-bias conductance is strongly sensitive to the magnitude of magnetization in FS region mzfs and orbital rotated angle α of superconductor gap. The negative MR only occurs in zero orbital rotated angle. This result can pave the way to distinguish the unconventional superconducting state in the relating topological insulator hybrid structures.  相似文献   

17.
李晓薇 《物理学报》2002,51(8):1821-1825
在超导体铁磁体绝缘层超导体结(SFIS)中,运用BogoliubovdeGennes(BdG)方程和FurusakiTsukada(FT)电流公式,计算铁磁超导共存态的自洽方程和SFIS结中的直流Josephson电流.研究表明,铁磁超导态的磁交换能h对准粒子的Andreev反射有抑制作用,使得SFIS结中的直流Josephson电流随铁磁超导共存态的磁交换能h增大而减弱 关键词: S/F-I-S结 铁磁超导态 直流Josephson电流  相似文献   

18.
In this paper, we apply Büttiker's gauge invariant, charge conservation, nonlinear transport theory to explore the spin-polarized tunneling of ferromagnet/insulator (semiconductor) single and double junctions. The Green function of spin-polarized tunneling is calculated by the tight-binding approximation method. The energy and the angle (between the molecular field and the vertical axis) dependences of the weakly nonlinear dc transport coefficient and the linear low frequency ac transport coefficient are investigated. The ac tunneling magnetoresistance is also discussed. Received 1st September 2000 and Received in final form 5 December 2000  相似文献   

19.
This paper investigates the effect of Dresselhaus spin--orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin--orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin--orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes.  相似文献   

20.
In this work we analyze the Tomasch effect in double barrier insulating superconducting N1ISIN2 (N: normal metal, I: insulator and S: superconductor) junctions. From the solution of the Bogoliubov–de Gennes equations we find that the differential conductance presents resonances when the applied voltage changes. These resonances are originated by the formation of quasibound states in the superconducting region and depend on the symmetry of the pair potential. We develop an analytical model in order to find the quasibound states energies and its lifetimes. This model allows us to calculate the voltage at which each resonance appears and the resonance widths. We calculate and analyze the dependence of the transmission coefficients with the thickness of the superconducting layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号