首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周澜  王丹丹  王兴福  顾世浦  盛宇波 《中国物理 B》2017,26(2):20302-020302
We put forward an optimal entanglement concentration protocol(ECP) for recovering an arbitrary less-entangled multi-photon Greenberger–Horne–Zeilinger(GHZ) state into the maximally entangled GHZ state based on the photonic Faraday rotation in low-quality(Q) cavity. In the ECP, only one pair of less-entangled multi-photon GHZ state and one auxiliary photon are required, and the concentration task can be realized by local operations. Moreover, our ECP can be used repeatedly to further concentrate the discarded items of conventional ECPs, which can increase its success probability largely. Under the practical imperfect detection condition, our protocol can still work with relatively high success probability. This ECP has application potential in current and future quantum communication.  相似文献   

2.
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger–Horne–Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.  相似文献   

3.
基于腔QED的多用户间的多原子量子信道的建立   总被引:3,自引:0,他引:3       下载免费PDF全文
赵晗  周小清  杨小琳 《物理学报》2009,58(9):5970-5977
提出基于腔QED技术的多用户间的多原子W态和GHZ态量子信道的建立方案.在量子网络的空闲时段,各个用户和量子交换机共享EPR对.量子交换机通过原子和腔场的相互作用将两个EPR对制备成W态,再与另一个EPR对进行纠缠交换,经过直接测量后为用户建立三原子W态量子信道;同时讨论了四用户间的W态量子信道的建立方案.量子交换机对三个EPR对进行纠缠交换,将三个原子同时与腔场作用,经过直接测量后为用户建立三原子GHZ态量子信道;并将此方法推广到N个用户间的GHZ态量子信道的建立. 关键词: 腔QED 量子信道 量子交换机 纠缠交换  相似文献   

4.
刘艳红  吴量  闫智辉  贾晓军  彭堃墀 《物理学报》2019,68(3):34202-034202
量子纠缠是一种重要的量子资源,在多个空间分离的量子存储器间建立确定性的量子纠缠,然后在用户控制的时刻将所存储的量子纠缠转移到量子信道中进行信息的分发和传送,这对于实现量子信息网络是至关重要的.本文介绍了用光学参量放大器制备与铷原子D1吸收线对应的非经典光场,而且在三个空间分离的原子系综中确定性量子纠缠的产生、存储和转移.利用电磁感应透明光和原子相互作用的原理,将制备的多组分光场纠缠态模式映射到三个远距离的原子系综以建立原子自旋波之间的纠缠.然后,存储在原子系综中的纠缠态通过三个量子通道,纠缠态的量子噪声被转移到三束空间分离的正交纠缠光场.三束释放的光场间纠缠的存在验证了该系统具有保持多组分纠缠的能力.这个方案实现了三个量子节点间的纠缠,并且可以直接扩展到具有更多节点的量子网络,为未来实现大型量子网络通信奠定了基础.  相似文献   

5.
陈娜  权东晓  裴昌幸  杨宏 《中国物理 B》2015,24(2):20304-020304
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.  相似文献   

6.
The distillation of the triplet Greenberger-Horne-Zeilinger (GHZ) state is demonstrated by using the entanglement concentrating process for the partially electron-spin-entangled systems. We designate an entanglement concentration protocol (ECP) in the quantum-dot (QD) and micro-cavity coupled systems based on the post-selection, from which the partially entangled state can be concentrated with an aid of the ancillary QD and single photon. This protocol can be repeated several rounds to get an optimal success probability. With the current technology, the maximally entangled electron spins can be achieved in the GHZ states after performing some suitable unitary operation locally for the long-distance quantum communications. The advantage is that during the whole process only the single photon needs to pass through the micro-cavity which increases the total success probability even if the cavity is imperfect in implementations.  相似文献   

7.
提出了一种基于Greenberger-Horne-Zeilinger(GHZ)纠缠态进行纯EPR对双向隐形传态的方案.通过使用纠缠交换技术,通信双方Alice和Bob共享两对三粒子GHZ纠缠态来构建量子信道.方案中通过使用受控非门操作,单量子位测量以及适当的幺正操作,通信双方可以同时发送一个纯EPR对给对方.故相比仅可以传送单一量子态的方案更经济.  相似文献   

8.
We present a controlled quantum secure direct communication protocol that uses a 2-dimensional Greenberger–Horne–Zeilinger (GHZ) entangled state and a 3-dimensional Bell-basis state and employs the high-dimensional quantum superdense coding, local collective unitary operations and entanglement swapping. The proposed protocol is secure and of high source capacity. It can effectively protect the communication against a destroying-travel-qubit-type attack. With this protocol, the information transmission is greatly increased. This protocol can also be modified, so that it can be used in a multi-party control system.  相似文献   

9.
量子隐形传态的杰出安全特性使其在未来的通讯领域充满潜力.量子力学的不确定性原理和不可克隆定理禁止对量子态进行直接复制,因此,量子隐形传态将量子态划分为经典和量子两部分,信息分别经由经典和量子通道从发送者Alice传递给远方的接收者Bob,根据这两种信息,Bob实行相应操作就可以以一定的几率重建初始传送态.利用一般意义的隐形传态方案,提出一种简便的新方法实现了一个N粒子任意态的概率传态.方法采用N个非最大纠缠的三粒子GHZ态作为量子通道,避免了引入额外的辅助粒子.为了实现传态,Alice将所有粒子分成N份,对第i份的粒子对(i,xi)实行Bell测量并将结果通过经典通道通知Bob,Bob对粒子(yi,zi)进行相应的操作就可以完成第i个粒子信息的传送.当完成N次相似的重复操作后,Bob就可以准确地重建初始传送态.文中以Bell态测量为基本手段,重复的操作同时也降低了实验难度,作为一个特例,文中给出了一个两粒子任意态的传态方案.  相似文献   

10.
廖湘萍  方卯发  方见树  朱钱泉 《中国物理 B》2014,23(2):20304-020304
We demonstrate a method to preserve entanglement and improve fidelity of three-qubit quantum states undergoing amplitude-damping decoherence using weak measurement and quantum measurement reversal. It is shown that we are able to enhance entanglement to the greatest extent, and to circumvent entanglement sudden death by increasing the weak measurement strength both for the GHZ state and the W state. The weak measurement technique can also enhance the fidelity to the quantum region and even close to 1 for the whole range of the decoherence parameter in both of the two cases. In addition, the W state can maintain more fidelity than the GHZ state in the protection protocol. However, the GHZ state has a higher success probability than the W state.  相似文献   

11.
《中国物理 B》2021,30(9):90302-090302
Due to the unavoidable interaction between the quantum channel and its ambient environment, it is difficult to generate and maintain the maximally entanglement. Thus, the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application. Here, we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously. The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability. In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels, we put forward the second scheme, which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers. In particular, its success probability can reach 100% in principle, and independent of the entanglement degree of the shared non-maximally entangled channel. Notably, in the second scheme, the auxiliary particle is not required.  相似文献   

12.
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.  相似文献   

13.
This paper has proposed a generalized quantum state sharing protocol of an arbitrary two-particle state using non-maximally GHZ states and generalized Bell state measurement.The sender Alice performs two-particle generalized Bell state measurements on her two particles in the state sharing process and the controller takes measurements on his particles and transfers the quantum information to the receiver with entanglement swapping by the cooperation of the other agents.It is found that the use of nonmaximally entangled state in quantum state sharing has enabled the secure sharing of the quantum state.  相似文献   

14.
Hua-Li Zhang 《中国物理 B》2022,31(5):50309-050309
A rational quantum state sharing protocol with the semi-off-line dealer is proposed. Firstly, the dealer Alice shares an arbitrary two-particle entangled state with the players by Einstein-Podolsky-Rosen (EPR) pairs and Greenberger-Horne-Zeilinger (GHZ) states. The EPR pairs are prepared by Charlie instead of the dealer, reducing the workload of the dealer. Secondly, all players have the same probability of reconstructing the quantum state, guaranteeing the fairness of the protocol. In addition, the dealer is semi-off-line, which considerably reduces the information exchanging between the dealer and the players. Finally, our protocol achieves security, fairness, correctness, and strict Nash equilibrium.  相似文献   

15.
余旭涛  张在琛  徐进 《中国物理 B》2014,23(1):10303-010303
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.  相似文献   

16.
薛乐  聂敏  刘晓慧 《物理学报》2013,62(17):170305-170305
为了解决量子信令远程传输损伤问题,提出了一种量子信令中继器模型. 在该模型中,首先对接收到的信令量子态进行纠缠纯化和纠缠分发,这样就可在收发双方之间建立纠缠信道. 其次,通过纠缠交换,传送所要发送的量子信令,从而完成量子信令的中继. 仿真结果表明,在保真度为0.98、纠缠对成功建立概率为0.98的条件下, 信令中继成功率可以达到97%以上;在纠缠交换概率、纯化概率和纠缠对成功建立概率都为0.98时, 量子信令中继器的吞吐量可达到183kbps,以上各项指标能够有效满足量子通信对信令中继的要求. 关键词: 量子通信 量子信令 纠缠纯化 纠缠分发  相似文献   

17.
Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General Nuser authentication protocol based on N-particle Greenberger–Horne–Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.  相似文献   

18.
A protocol to realize complete and nondestructive atomic Greenberger–Horne–Zeilinger (GHZ)‐state analysis in cavity quantum electrodynamics (QED) systems is presented. In this protocol, the three information‐carrier atoms and the three auxiliary atoms are trapped in six separated cavities, respectively. After ten‐step operations, the information for distinguishing the eight different GHZ states of the three information‐carrier atoms is encoded on the auxiliary atoms. Thus, by means of detecting the auxiliary atoms, complete and nondestructive GHZ‐state analysis with high success probability is realized. Moreover, the driving pluses of operations are designed as a simple superposition of Gaussian or trigonometric functions by using the invariant‐based inverse engineering. Therefore, the protocol can be realized experimentally and applied in some quantum information tasks based on complete GHZ‐state analysis with less physical entanglement resource.  相似文献   

19.
陈立冰  路洪  刘玉华 《中国物理》2005,14(7):1323-1328
提出用三粒子纠缠态作量子信道远程操纵单比特旋转的理论方案。首先,我们利用最大纠缠的GHZ态的性质远程操纵单比特旋转,其保真度和成功几率均为1。 我们还提出了两个用部分纠缠的GHZ态作量子信道实现保真度为1的远程操纵单比特旋转的方案。这些方案的特点是,两地之间还存在一第三者,他作为监控方参与量子远程操纵过程,特别地,当量子信道为部分纠缠态时,他能矫正被非理想量子信道致畸的量子态。除了GHZ型态外,我们还证明了W型态亦可用作量子信道远程操纵单比特旋转,但后者的成功几率总是小于前者。  相似文献   

20.
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号