共查询到20条相似文献,搜索用时 0 毫秒
1.
The metal droplets deposition method(MDDM) is a rapid prototyping technology, implemented via metallurgy bonding within droplets. The anisotropy of heat transfer and re-melting is caused by an asymmetric deposition process. A lattice Boltzmann method(LBM) model is established to predict the heat transfer and phase change in the multi-layer deposition. The prediction model is verified by the experimental temperature profiles in existing literature. The monitoring points are set to compare the tem... 相似文献
2.
In the present work, a simple large eddy simulation (LES)-based lattice Boltz- mann model (LBM) is developed for thermal turbulence research. This model is validated by some benchmark tests. The numerical results demonstrate the good performance of the present model for turbulent buoyant flow simulation. 相似文献
3.
The lattice Boltzmann method (LBM) for a binary miscible fluid mixture is applied to problems of transport phenomena in a three‐dimensional porous structure. Boundary conditions for the particle distribution function of a diffusing component are described in detail. Flow characteristics and concentration profiles of diffusing species at a pore scale in the structure are obtained at various Reynolds numbers. At high Reynolds numbers, the concentration profiles are highly affected by the flow convection and become completely different from those at low Reynolds numbers. The Sherwood numbers are calculated and compared in good agreement with available experimental data. The results indicate that the present method is useful for the investigation of transport phenomena in porous structures. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
Understanding and modeling flows over porous layers are of great industrial significance. To accurately solve the turbulent multi-scale flows on complex configurations, a rescaling algorithm designed for turbulent flows with the Chapman-Enskog analysis is proposed. The mesh layout and the detailed rescaling procedure are also introduced. Direct numerical simulations (DNSs) for a turbulent channel flow and a porous walled turbulent channel flow are performed with the three-dimensional nineteen-velocity (D3Q19) multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) to validate the accuracy, adaptability, and computational performance of the present rescaling algorithm. The results, which are consistent with the previous DNS studies based on the finite difference method and the LBM, demonstrate that the present method can maintain the continuity of the macro values across the grid interface and is able to adapt to complex geometries. The reasonable time consumption of the rescaling procedure shows that the present method can accurately calculate various turbulent flows with multi-scale and complex configurations while maintaining high computational efficiency. 相似文献
5.
Natural convection in an open end cavity with a hot inclined wall is simulated based on the lattice Boltzmann method (LBM). The physics of flow and energy transfer in open end cavities are addressed when the hot wall is inclined. The combination of the two topics (open cavity and inclined walls) is the main novelty of the present study. The effects of the angle of the hot inclined wall on the flow field and heat transfer are thoroughly investigated. The Prandtl number is fixed to 0.71 (air). The Rayleigh number and the angle of the hot inclined wall are varied in the range of 104 to 106 and 60? to 85?, respectively. The results are presented for two different aspect ratios, i.e., A = 1 and 2. The results obtained with the LBM are also compared with those of the finite volume method (FVM). The predicted results of the LBM conform to those of the FVM. The results show that by increasing the angle of the hot inclined wall and the aspect ratio of the cavity, the average Nusselt number decreases. The trend of the local Nusselt number on the inclined wall is also discussed. 相似文献
6.
The isothermal single-component multi-phase lattice Boltzmann method(LBM) combined with the particle motion model is used to simulate the detailed process of liquid film rupture induced by a single spherical particle.The entire process of the liquid film rupture can be divided into two stages.In Stage 1,the particle contacts with the liquid film and moves into it due to the interfacial force and finally penetrates the liquid film.Then in Stage 2,the upper and lower liquid surfaces of the thin fi... 相似文献
7.
IntroductionThetwo_phasedriveninporousmediaisanimportantsubjectofwideinterdisciplinaryconcern ,suchaspetroleumindustry ,subterranean ,chemicalprojectetc..It’sverydifficultifweadoptnumericalintegralmethodforthecaseofmultiphaseandmulticomposition ,thecruxof… 相似文献
8.
《应用数学和力学(英文版)》1983,4(5)
In this paper applying M. I. Visik’s and L. R. Lyuster-nik’s[1] asymptotic method and principle of fixed point of functional analysis, we study the singular perturbation of general boundary value problem for higher order quasilinear elliptic equation in the case of boundary perturbation combined with equation perturbation. We prove the existence and uniqueness of solution for perturbed problem. We give its asymptotic approximation and estimation of related remainder term. 相似文献
9.
The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent channel flow with a porous surface is directly simulated by the lattice Boltzmann method (LBM). The Darcy-Brinkman- Forcheimer (DBF) acting force term is added in the lattice Boltzmann equation to simu- late the turbulent flow bounded by porous walls. It is found that there are two opposite trends (enhancement or reduction) for the porous medium to modify the intensities of the velocity fluctuations and the Reynolds stresses in the near wall region. The parametric study shows that flow modification depends on the Darcy number and the porosity of the porous medium. The results show that, with respect to the conventional impermeable wall, the degree of turbulence modification does not depend on any simple set of param- eters obviously. Moreover, the drag in porous wall-bounded turbulent flow decreases if the Darcy number is smaller than the order of O(10-4) and the porosity of porous walls is up to 0.4. 相似文献
10.
11.
The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances. 相似文献
12.
M.M. Fragner R. Deiterding 《International Journal of Computational Fluid Dynamics》2016,30(6):402-407
ABSTRACTThe side-wind loading on a simplified train model at scale 1:25 is investigated by parallel large eddy simulation (LES) with incompressible solvers from the OpenFOAM package and a novel dynamically adaptive, parallel LES-type lattice Boltzmann method (LBM) implemented in our own AMROC framework. It is found that the new LBM code provides more accurate time-averaged force predictions, while compute times are reduced. 相似文献
13.
The lattice Boltzmann method (LBM) is used to simulate the effect of magnetic field on the natural convection in a porous cavity. The sidewalls of the cavity are heated sinusoidally with a phase derivation, whereas the top and bottom walls are thermally insulated. Numerical simulation is performed, and the effects of the pertinent parameters, e.g., the Hartmann number, the porosity, the Darcy number, and the phase deviation, on the fluid flow and heat transfer are investigated. The results show that the heat transfer is affected by the temperature distribution on the sidewalls clearly. When the Hartmann number is 0, the maximum average Nusselt number is obtained at the phase deviation 90°. Moreover, the heat transfer enhances when the Darcy number and porosity increase, while decreases when the Hartman number increases. 相似文献
14.
Wetting phenomena are widespread in nature and industrial applications. In general, systems concerning wetting phenomena are typical multicomponent/multiphase complex fluid systems. Simulating the behavior of such systems is important to both scientific research and practical applications. It is challenging due to the complexity of the phenomena and difficulties in choosing an appropriate numerical method. To provide some detailed guidelines for selecting a suitable multiphase lattice Boltzmann model, two kinds of lattice Boltzmann multiphase models, the modified S-C model and the H-C-Z model, are used in this paper to investigate the static contact angle on solid surfaces with different wettability combined with the geometric formulation (Ding, H. and Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708 (2007)). The specific characteristics and computational performance of these two lattice Boltzmann method (LBM) multiphase models are analyzed including relationship between surface tension and the control parameters, the achievable range of the static contact angle, the maximum magnitude of the spurious currents (MMSC), and most importantly, the convergence rate of the two models on simulating the static contact angle. The results show that a wide range of static contact angles from wetting to non-wetting can be realized for both models. MMSC mainly depends on the surface tension. With the numerical parameters used in this work, the maximum magnitudes of the spurious currents of the two models are on the same order of magnitude. MMSC of the S-C model is universally larger than that of the H-C-Z model. The convergence rate of the S-C model is much faster than that of the H-C-Z model. The major foci in this work are the frequently-omitted important details in simulating wetting phenomena. Thus, the major findings in this work can provide suggestions for simulating wetting phenomena with LBM multiphase models along with the geometric formulation. 相似文献
15.
L. Prahl A. Hölzer D. Arlov J. Revstedt M. Sommerfeld L. Fuchs 《International Journal of Multiphase Flow》2007
The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (α) and the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions. 相似文献
16.
人体面部皮肤的本构参数反演及力学特性研究对皮肤病变早期诊断、皮肤仿生材料设计及计算图形学中的面部模型建立都有着至关重要的作用, 机器学习与有限元仿真方法相结合能更高效、更准确地解决非入侵式皮肤组织本构参数反求问题. 首先建立了面部皮肤多向拉伸下的应力松弛有限元模型, 并通过多步位移控制法对皮肤的超弹性力学性能与黏弹性力学性能分离; 对Gasser-Ogden-Holzapfel (GOH)与Prony series本构模型参数进行敏感性分析, 揭示影响面部皮肤应力松弛实验结果的关键参数. 其次, 利用贝叶斯超参数优化理论搭建随机森林(RF)模型与支持向量回归(SVR)模型, 结合实验数据对人体面部皮肤组织本构参数进行了反求. 最后, 将计算得到的有限元仿真曲线与试验获得的拉伸力响应曲线对比, 并引入决定系数 R 2对两种模型的预测准确性进行了评估. 结果表明, 纤维组织分散度κ 、剪切模量相关参数C 10和松弛模量g 1是影响皮肤应力松弛实验结果的关键参数, RF模型数值计算曲线与试验曲线的拟合优度为0.98, 其在皮肤本构参数反演问题上表现出更高的准确率, 机器学习可以精准高效地获取面部皮肤的本构参数, 进而准确描述皮肤组织的力学性能, 该方法也可进一步推广到其他生物软组织的复杂本构参数反演问题. 相似文献
17.
Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM) 总被引:5,自引:1,他引:4
下载免费PDF全文

The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and Al2O3. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical methods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ = 2.5 when Ra = 106 while at λ = 1.5 for other Rayleigh numbers. 相似文献
18.
We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium distribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described particularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil. 相似文献
19.
Mahmoud Jourabian Mousa Farhadi Kurosh Sedighi AhmadAli Rabienataj Darzi Yousef Vazifeshenas 《国际流体数值方法杂志》2012,70(3):313-325
In this study, a numerical investigation of melting phenomenon with natural convection in a cavity with fin has been performed using enthalpy‐based lattice Boltzmann method. The lattice D2Q9 model was applied to determine the density and velocity fields, and the D2Q5 model for the temperature field. The effect of vertical position and length of the fin on the melting rate was studied. The simulations were carried out for Stefan number of 10, Rayleigh number of 10 5 and relative thermal conductivity (kfin∕kfluid) ranging from 5 to 30. The obtained results show that the rate of melting increases when the relative thermal conductivity and the length of the fin become greater. We also found that the variation of vertical position of the fin from bottom to middle has an insignificant effect on melting while it causes the increase of full melting time when the fin is mounted on the top of the cavity. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
20.
The lattice Boltzmann method (LBM) has gained increasing popularity in the last two decades as an alternative numerical approach for solving fluid flow problems. One of the most active research areas in the LBM is its application in particle-fluid systems, where the advantage of the LBM in efficiency and parallel scalability has made it superior to many other direct numerical simulation (DNS) techniques. This article intends to provide a brief review of the application of the LBM in particle-fluid systems. The numerical techniques in the LBM pertaining to simulations of particles are discussed, with emphasis on the advanced treatment for boundary conditions on the particle-fluid interface. Other numerical issues, such as the effect of the internal fluid, are also briefly described. Additionally, recent efforts in using the LBM to obtain closures for particle-fluid drag force are also reviewed. 相似文献