首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国物理 B》2021,30(7):77501-077501
The magnetism and magnetocaloric effect(MCE) of rare-earth-based tungstate compounds R_3 BWO_9(R=Gd,Dy,Ho) have been studied by magnetic susceptibility,isothermal magnetization,and specific heat measurements.No obvious long-range magnetic ordering can be found down to 2 K.The Curie-Weiss fitting and magnetic susceptibilities under different applied fields reveal the existence of weak short-range antiferromagnetic couplings at low temperature in these systems.The calculations of isothermal magnetization exhibit a giant MCE with the maximum changes of magnetic entropy being 54.80 J/kg-K at 2 K for Gd_3 BWO_9,28.5 J/kg-K at 6 K for Dy_3 BWO_9,and 29.76 J/kg-K at 4 K for Ho_3 BWO_9,respectively,under a field change of 0-7 T.Especially for Gd_3 BWO_9,the maximum value of magnetic entropy change(-ΔS_M~(max)) and adiabatic temperature change(-ΔT_(ad)~(max)) are 36.75 J/kg·K and 5.56 K for a low field change of 0-3 T,indicating a promising application for low temperature magnetic refrigeration.  相似文献   

2.
Yan Zhang 《中国物理 B》2022,31(7):77501-077501
HoBi single crystal and polycrystalline compounds with NaCl-type structure are successfully obtained, and their magnetic and magnetocaloric properties are studied in detail. With temperature increasing, HoBi compound undergoes two magnetic transitions at 3.7 K and 6 K, respectively. The transition temperature at 6 K is recognized as an antiferromagnetic-to-paramagnetic (AFM-PM) transition, which belongs to the first-order magnetic phase transition (FOMT). It is interesting that the HoBi compound with FOMT exhibits good thermal and magnetic reversibility. Furthermore, a large inverse and normal magnetocaloric effect (MCE) is found in HoBi single crystal in the $H|| [100]$ direction, and the positive $\Delta S_{\rm M}$ peak reaches 13.1 J/kg$\cdot$K under a low field change of 2 T and the negative $\Delta S_{\rm M}$ peak arrives at $-18 $ J/kg$\cdot$K under a field change of 5 T. These excellent properties are expected to be applied to some magnetic refrigerators with special designs and functions.  相似文献   

3.
Magnetic properties and magnetic entropy changes in LaFe$_{11.5}$Si$_{1.5}$ have been investigated by partially substituting Pr by La. It is found that La$_{1 - x}$Pr$_{x}$Fe$_{11.5}$Si$_{1.5}$ compounds remain cubic NaZn$_{13}$-type structures even when the Pr content is increased to 0.5, i.e. $x = 0.5$. Substitution of Pr for La leads to a reduction in both the crystal constant and the Curie temperature. A stepwise magnetic behaviour in the isothermal magnetization curves is observed, indicating that the characteristic of the itinerant electron metamagnetic (IEM) transition above $T_{\rm C}$ becomes more prominent with the Pr content increasing. As a result, the magnetic entropy change is remarkably enhanced from 23.0 to 29.4\,J/kg$\cdot$K as the field changes from 0 to 5\,T, with the value of $x$ increasing from 0 to 0.5. It is more attractive that the magnetic entropy changes for all samples are shaped into high plateaus in a wide range of temperature, which is highly favourable for Ericsson-type magnetic refrigeration.  相似文献   

4.
Yong Li 《中国物理 B》2022,31(8):87103-087103
The crystal structure, martensitic transformation and magnetocaloric effect have been studied in all-$d$-metal Ni$_{35}$Co$_{15}$Mn$_{33}$Fe$_{2}$Ti$_{15}$ alloy ribbons with different wheel speeds (15 m/s (S15), 30 m/s (S30), and 45 m/s (S45)). All three ribbons crystalize in B2-ordered structure at room temperature with crystal constants of 5.893(2) Å, 5.898(4) Å, and 5.898(6) Å, respectively. With the increase of wheel speed, the martensitic transformation temperature decreases from 230 K to 210 K, the Curie temperature increases slightly from 371 K to 378 K. At the same time, magnetic entropy change ($\Delta S_{\rm m}$) is also enhanced, as well as refrigeration capacity ($RC$). The maximum $\Delta S_{\rm m}$ of 15.6(39.7) J/kg$\cdot$K and $RC$ of 85.5 (212.7) J/kg under $\Delta H = 20$ (50) kOe (1 ${\rm Oe}=79.5775$ A$\cdot$m$^{-1}$) appear in S45. The results indicate that the ribbons could be the candidate for solid-state magnetic refrigeration materials.  相似文献   

5.
Effects of Nd-doping on the magnetic properties and magnetocaloric effects (MCEs) of NdxLa1-xFe11.5Al1.5 have been investigated. Substitution of Nd leads to a weakening of the antiferromagnetic (AFM) coupling and an enhancement of the ferromagnetic (FM) coupling. This in turn results in a complex magnetic behaviour for Nd0.2La0.8Fe11.5Al1.5 characterized by the occurrence of two phase transitions at ~188 K (PM AFM) and ~159 K (AFM-FM). As a result, a table-like MCE (9 J/kg.K) is found in a wide temperature range (160-185 K) for a field change of 0-5T around the transition temperature, as evidenced by both the magnetic and calorimetric measurements. Based on the analysis of low-temperature heat capacity, it is found that the AFM-FM phase transition modifies the electron density significantly, and the major contribution to the entropy change comes from the electronic entropy change.  相似文献   

6.
Tina Raoufi  Jincheng He 《中国物理 B》2023,32(1):17504-017504
We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.  相似文献   

7.
<正>Magnetic properties and magnetocaloric effects of La1-xRxFe1105 Si9105)(R=Pr,(0≤x≤0.5);R = Ce and Nd, (0≤x≤0.3)) compounds are investigated.Partially replacing La with R = Ce,Pr and Nd in La1-xRxFe11.5Si1.5 leads to a reduction in Curie temperature due to the lattice contraction.The substitution of R for La causes an enhancement in field-induced itinerant electron metamagnetic transition,which leads to a remarkable increase in magnetic entropy change△Sm and also in hysteresis loss.However,a high effective refrigerant capacity RCeff is still maintained in La1-xRxFe11.5Si1.5.In the present samples,a large△Sm and a high RCeff have been achieved simultaneously.  相似文献   

8.
于宙  李祥  龙雪  程兴旺  刘颖  曹传宝 《中国物理 B》2009,18(7):3040-3043
This paper reports that a chemical method is employed to synthesize Co and Al co-doped ZnO,namely,Zn0.99 x Co0.01 Al x O dilution semiconductors with the nominal composition of x = 0,0.005 and 0.02.Structural,magnetic and optical properties of the produced samples are studied.The results indicate that samples sintered in air under the temperatures of 500 C show a single wurtzite ZnO structure and the ferromagnetism decreases with the increase of Al.Photoluminescence spectra of different Al-doped samples indicate that increasing Al concentration in Zn0.99 x Co0.01 Al x O results in a decrease of Zn i,which resembles the trend of the ferromagnetic property of the corresponding samples.Therefore,it is deduced that the ferromagnetism observed in the studied samples originates from the interstitial defect of zinc(Zni) in the lattice of Co-doped ZnO.  相似文献   

9.
10.
The magnetic and magnetocaloric properties of(Tb1-xDyx) 6 Co 1.67 Si 3(0 ≤ x ≤ 0.8) have been experimentally investigated.The compounds exhibit a Ce6Ni2Si3-type hexagonal structure and undergo a second-order magnetic transition.The Curie temperature decreases from ~ 187 K to 142 K as the content of Dy grows from 0 to 0.8.The maximal magnetic entropy change,for a field change of 0-5 T,varies between ~ 6.2 and ~ 7.4 J/kg.K,slightly decreasing when Dy is introduced.The substitution of Dy leads to a remarkable increase in refrigeration capacity(RC).A large RC value of ~ 626 J/kg is achieved for x = 0.4 under a field change of 0-5 T.  相似文献   

11.
Shijun Qin 《中国物理 B》2022,31(9):97503-097503
The single crystal of cubic perovskite BaFeO$_{3}$ shows multiple magnetic transitions and external stimulus sensitive magnetism. In this paper, a 5%-Co-doped BaFeO$_{3}$ (i.e. BaFe$_{0.95}$Co$_{0.05}$O$_{3})$ single crystal was grown by combining floating zone methods with high-pressure techniques. Such a slight Co doping has little effect on crystal structure, but significantly changes the magnetism from the parent antiferromagnetic ground state to a ferromagnetic one with the Curie temperature $T_{\rm C} \approx 120$ K. Compared with the parent BaFeO$_{3}$ at the induced ferromagnetic state, the saturated magnetic moment of the doped BaFe$_{0.95}$Co$_{0.05}$O$_{3}$ increases by about 10% and reaches 3.64 $\mu_{\rm B}$/f.u. Resistivity and specific heat measurements show that the ferromagnetic ordering favors metallic-like electrical transport behavior for BaFe$_{0.95}$Co$_{0.05}$O$_{3}$. The present work indicates that Co-doping is an effective method to tune the magnetic and electric properties for the cubic perovskite phase of BaFeO$_{3}$.  相似文献   

12.
We have studied the magnetic and magnetocaloric properties of the Er3 Co compound,which undergoes ferromagnetic ordering below the Curie temperature TC = 13 K.It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er3 Co compound.The giant magnetocaloric effect(MCE) without hysteresis loss around T C is found to result from the second-order ferromagnetic-to-paramagnetic transition.The maximal value of magnetic entropy change is 24.5 J/kg.K with a refrigerant capacity(RC) value of 476 J/kg for a field change of 0-5 T.Large reversible MEC and RC indicate the potentiality of Er3 Co as a candidate magnetic refrigerant at low temperatures.  相似文献   

13.
沈俊  王芳  李养贤  孙继荣  沈保根 《中国物理》2007,16(12):3853-3857
Magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 have been investigated by magnetization measurement. This compound is of a hexagonal Ce$_{6}$Ni$_{2}$Si$_{3}$-type structure with a saturation magnetization of 187\,emu/g at 5\,K and a reversible second-order magnetic transition at Curie temperature $T_{\rm C} = 186$\,K. A magnetic entropy change $\Delta S = 7$\,J\,$\cdot$\,kg$^{-1}$\,$\cdot$\,K$^{-1}$ is observed for a magnetic field change from 0 to 5\,T. A large value of refrigerant capacity (RC) is found to be 330\,J/kg for fields ranging from 0 to 5\,T. The large RC, the reversible magnetization around $T_{\rm C}$ and the easy fabrication make the Tb6Co1.67Si3 compound a suitable candidate for magnetic refrigerants in a corresponding temperature range.  相似文献   

14.
The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=FeFeCo薄膜 溅射条件 软磁性 高饱和磁化强度FeCo film, sputtering conditions, high saturation magnetization, soft magnetic properties2005-10-263/7/2006 12:00:00 AMThe dependences of soft magnetic properties and microstructures of the sputtered FeCo (=Fe65Co35) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and taxget-substrate spacing dT-s are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S, and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.  相似文献   

15.
Xiyu Chen 《中国物理 B》2022,31(4):47501-047501
Magnetic susceptibility, specific heat, and neutron powder diffraction measurements have been performed on polycrystalline Li$_{2}$Co(WO$_{4}$)$_{2}$ samples. Under zero magnetic field, two successive magnetic transitions at $T_{\rm N1}\sim 9.4$ K and $T_{\rm N2}\sim 7.4$ K are observed. The magnetic ordering temperatures gradually decrease as the magnetic field increases. Neutron diffraction reveals that Li$_{2}$Co(WO$_{4}$)$_{2}$ enters an incommensurate magnetic state with a temperature dependent $\bm k$ between $T_{\rm N1}$ and $T_{\rm N2}$. The magnetic propagation vector locks-in to a commensurate value $\bm k = (1/2, 1/4, 1/4)$ below $T_{\rm N2}$. The antiferromagnetic structure is refined at 1.7 K with Co$^{2+}$ magnetic moment 2.8(1) $\mu_{\rm B}$, consistent with our first-principles calculations.  相似文献   

16.
Chun-Mei Li 《中国物理 B》2022,31(5):56105-056105
The alloying and magnetic disordering effects on site occupation, elastic property, and phase stability of Co$_{2}Y$Ga ($Y={\rm Cr}$, V, and Ni) shape memory alloys are systematically investigated using the first-principles exact muffin-tin orbitals method. It is shown that with the increasing magnetic disordering degree $y$, their tetragonal shear elastic constant $C'$ (i.e., $(C_{11}-C_{12})/2$) of the $L2_{1}$ phase decreases whereas the elastic anisotropy $A$ increases, and upon tetragonal distortions the cubic phase gets more and more unstable. Co$_{2}$CrGa and Co$_{2}$VGa alloys with $y\geq0.2$ thus can show the martensitic transformation (MT) from $L2_{1}$ to $D0_{22}$ as well as Co$_{2}$NiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the ferromagnetism state, the excessive Ga atoms always tend to take the $Y$ sublattices, whereas the excessive Co atom favor the $Y$ sites when $Y={\rm Cr}$, and the excessive $Y$ atoms prefer the Co sites when $Y={\rm Ni}$. The Ga-deficient $Y={\rm V}$ alloys can also occur the MT at the ferromagnetism state by means of Co or V doping, and the MT temperature $T_{\rm M}$ should increase with their addition. In the corresponding ferromagnetism $Y={\rm Cr}$ alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from $D0_{22}$ to $L2_{1}$ is promoted and then $T_{\rm M}$ for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic state. At the ferromagnetism state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as $Y$ and Ga.  相似文献   

17.
Dong Yan 《中国物理 B》2022,31(3):37406-037406
The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr$_{2-x}$Al$_{x}$Te$_{4}$ ($0 \leqslant x \leqslant 0.2$). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature ($T_{\rm c}$) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when $x=0.075$. The value of normalized specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the highest $T_{\rm c}$ sample CuIr$_{1.925}$Al$_{0.075}$Te$_{4}$ was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of $T_{\rm c}$ vs. doping content.  相似文献   

18.
Chunjie Yan 《中国物理 B》2023,32(1):17503-017503
We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy (PMA) coefficient, magnetic domain structures, and magnetization dynamics of Pt(5 nm)/[Co($t_{\rm Co}$)/Ni($t_{\rm Ni}$)]$_{5}$/Pt(1 nm) multilayers by combining the four standard magnetic characterization techniques. The magnetic-related hysteresis loops obtained from the field-dependent magnetization $M$ and anomalous Hall resistivity (AHR) $\rho_{{xy}}$ showed that the two serial multilayers with $t_{\rm Co} = 0.2$ nm and 0.3 nm have the optimum PMA coefficient $K_{\rm U}$ as well as the highest coercivity $H_{\rm C}$ at the Ni thickness $t_{\rm Ni}= 0.6 $ nm. Additionally, the magnetic domain structures obtained by magneto-optic Kerr effect (MOKE) microscopy also significantly depend on the thickness and $K_{\rm U}$ of the films. Furthermore, the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to $K_{\rm U}$ and $H_{\rm C}$, indicating that inhomogeneous magnetic properties dominate the linewidth. However, the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and $K_{\rm U}$. Our results could help promote the PMA [Co/Ni] multilayer applications in various spintronic and spin-orbitronic devices.  相似文献   

19.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

20.
An iron film percolation system is fabricated by vapour-phase deposition on fracture surfaces of α-Al2O3 ceramics. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurement reveals that the magnetic phase of the film samples evolve from a high-temperature ferromagnetic state to a low-temperature spin-glass-like state, which is also demonstrated by the temperature-dependent ac susceptibility of the iron films. The temperature dependence of the exchange bias field He of the iron film exhibits a minimum peak around the temperature T=5 K, which is independent of the magnitude of the cooling field Hcf. However, for T 〉 10K, (1) He is always negative when Hcf=2kOe and (2) for Hcf= 20 kOe (1Oe≈80 A/m), He changes from negative to positive values as T increases. Our experimental results show that the anomalous hysteresis properties mainly result from the oxide surfaces of the films with spin-glass-like phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号