共查询到6条相似文献,搜索用时 62 毫秒
1.
提出了一种使用编码器−时序建模结构的时延估计方法来估计声学回声抵消中传声器信号相对远端信号的时延。该方法以短时傅里叶变换域的远端信号和传声器信号作为输入特征, 通过复数卷积神经网络构成的编码器提取带有相位信息的高维特征, 利用循环神经网络学习两输入信号之间的时延关系, 构建了从信号到时延的映射。仿真实验结果表明, 相比WebRTC-DE和GCC-PHAT, 所提方法的优势有: (1)模型的参数量和计算量不受时延长度影响; (2)有效缩短了时延估计的收敛时间和跟踪时间; (3)在长混响和双端对讲的情况下具有更小、更稳定的估计误差和标准差。将使用编码器−时序建模结构的时延估计方法与自适应回声抵消级联的实验验证了新方法的有效性。
相似文献2.
A two-stage convolutional recurrent network(CRN) with complex spectral input features is proposed to address the stereophonic acoustic echo cancellation(SAEC) problem.The proposed algorithm avoids the decorrelation of far-end signals, which solves the non-unique solution problem of the adaptive filter-based SAEC and ensures the stereo sound quality and spatial perception. It deals with SAEC problem in two stages. In the first stage, a CRN model is used to estimate the echo signal based on the mi... 相似文献
3.
多通路声重放系统能够增强听者的现实感与空间感,但在免提通信条件下,其不可避免会受到噪声和回声干扰,严重影响通信质量。针对上述问题,本文提出了一种基于门控卷积循环神经网络的多通路声学回声消除和噪声抑制方法。该方法以传声器接收信号和重放声道的压缩复数谱为网络输入,以近端语音的压缩复数谱为网络的输出目标,直接从传声器拾取信号中恢复近端纯净语音,无需对声重放信号进行去相关处理,解决了传统自适应滤波方法中存在的非唯一解问题,同时保证了多通路声重放质量。仿真和真实声学环境实验均表明本文所提出的方法可显著消除多通路声重放系统的噪声和回声,在语音质量和回声返回衰减增益方面均优于传统算法。 相似文献
4.
5.
6.
Wenbing Zhang Zidong Wang Yurong Liu Derui Ding Fuad E. Alsaadi 《Physics letters. A》2017,381(1):10-18
The paper is concerned with the state estimation problem for a class of time-delayed complex networks with event-triggering communication protocol. A novel event generator function, which is dependent not only on the measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance. By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based estimator. 相似文献