首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution transmission electron microscopy, X-ray diffraction and photoluminescence measurements are carried out in order to study the defects in CdS quantum dots (QDs), synthesized in cubic phase by chemical co-precipitation method. The nanotwinning structures in CdS quantum dots (∼2.7 nm) are reported for the first time. Mostly CdS QDs are characterized by existence of nanotwin structures. The twinning structures are present together with stacking faults in some QDs while others exist with grain boundaries. Raman spectroscopy analysis shows intense and broad peaks corresponding to fundamental optical phonon mode (LO) and the first over tone mode (2LO) of CdS at 302 cm−1 and 605 cm−1 respectively. A noticeable shift is observed in Raman lines indicating the effect of phonon confinement. Fourier transform infrared spectroscopy analysis confirms the presence of Cd–S stretching bands at 661 cm−1 and 706 cm−1. The photoluminescence spectrum shows emission in yellow and red regions of visible spectrum. The presence of stacking faults and other defects are explained on the basis of X-rays diffraction patterns and are correlated with photoluminescence spectrum. These nanotwinning and microstructural defects are responsible for different emissions from CdS QDs.  相似文献   

2.
Photoluminescence (PL) properties of 3-mercaptopropionic acid (MPA) coated CdTe/CdS core-shell quantum dots (QDs) in aqueous solution in the presence of ZnO colloidal nanocrystals were studied by steady-state and time-resolved PL spectroscopy. The PL quenching of CdTe/CdS core-shell QDs with addition of purified ZnO nanocrystals resulted in a decrease in PL lifetime and a small red shift of the PL band. It was found that CdTe(1.5 nm)/CdS type II core-shell QDs exhibited higher efficiency of PL quenching than the CdTe(3.0 nm)/CdS type I core-shell QDs, indicating an electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals. The experimental results indicated that the efficient electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals could be controlled by changing the CdTe core size on the basis of the quantum confinement effect.  相似文献   

3.
在紧束缚近似下,利用常量相互作用模型和Landauer-Bütticker公式,计算了扶手椅型和金属锯齿型碳纳米管量子点的电导。发现,根据碳纳米管量子点的长度的不同,扶手椅型碳纳米管量子点的电导可以具有两电子或四电子的壳层结构。而锯齿型碳纳米管量子点的电导却仅有四电子的壳层结构,与长度无关;这些理论结果与之前的实验结果符合的很好。  相似文献   

4.
Cadmium sulfide (CdS) semiconducting quantum dots (QDs) were prepared using in situ synthesizing method in crosslinked chitosan hydrogel films under relative mild experimental conditions and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirmed that crosslinked chitosan hydrogel films provided a confined matrix for CdS QDs growth in uniform size through chelation and electrostation between cadmium ions and amino groups in chitosan chains. The CdS QDs/chitosan composite films exhibited a highly efficient photocatalytic activity for decolorization of methyl orange (MO) solution under visible light irradiation. The good linearity relationship between ln (C0/Ci) and irradiation time (t) indicated that the decolorization of MO dye under present experimental conditions followed pseudo-first-order kinetics. These results suggested that CdS QDs/chitosan composite films were suitable material for potential application in decolorization of organic dye pollutants under visible light irradiation.  相似文献   

5.
李霞  冯东海  何红燕  贾天卿  单璐繁  孙真荣  徐至展 《物理学报》2012,61(19):197801-197801
在水相合成CdTe以及CdTe/CdS核壳结构量子点基础上, 利用基于抽运-探测技术的瞬态差分透射技术研究了CdTe量子点以及不同CdS壳层厚度的CdTe/CdS量子点的最低激子能态的超快激发与弛豫动力学. 研究表明:相比于CdTe,CdTe/CdS量子点的电子空穴由于空间分离,其所需的激发时间要长于电子空穴空间重叠态所需要的激发时间.随着壳层厚度的增加, 量子点表面的钝化有效地减少了表面态相关弛豫机理,并延长相对应的弛豫时间.  相似文献   

6.
Hongyu Ma 《中国物理 B》2021,30(8):87303-087303
The slower response speed is the main problem in the application of ZnO quantum dots (QDs) photodetector, which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes. However, the detailed mechanism is still not very clear. Herein, the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy (VO) defects controlled by hydrogen peroxide (H2O2) solution treatment have been investigated. After H2O2 solution treatment, VO concentration of ZnO QDs decreased. The H2O2 solution-treated device has a higher photocurrent and a lower dark current. Meanwhile, with the increase in VO concentration of ZnO QDs, the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate. More interestingly, the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects. The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed, which is helpful for sensor designing.  相似文献   

7.
《Current Applied Physics》2020,20(10):1176-1184
A Carbon quantum dots supported ZnO hollow Sphere (ZnO/C-dots) were synthesized through a solvothermal method using polyethylene glycol 400 (PEG 400) as a solvent. The phase and crystal structure of as-prepared ZnO/C-dots photocatalyst were characterized by powder X-ray diffraction (XRD). The surface morphology and size of the composite were analyzed using field emission scanning microscopy (FE-SEM). The optical properties of the as-prepared nanocomposites were examined using UV–visible (UV–Vis) spectrometer. The photocatalytic activity of pure ZnO and ZnO/C-dots nanocomposites were evaluated by the degradation of methylene blue (MB) under UV–Visible light irradiation. The ZnO/C-dots nanocomposites exhibited maximum photocatalytic MB dye degradation efficiency of 96% which is much higher that the pure ZnO (63%). The enhanced photocatalytic activity of ZnO/C-dots is due to the extended light absorption in the visible region and suppressed photoexcited electron-hole pair recombination rate. Moreover, the activity of photocatalyst after five cycles exhibits high stability, which is vital for the sustainable photocatalytic procedures. It is concluded that the prepared ZnO/C-dots composite have low cost, good stability and has a great potential application for Photocatalytic dye degradation.  相似文献   

8.
以酿酒酵母为载体,常温下利用仿生法成功合成了CdS量子点。荧光发射光谱、紫外吸收光谱以及荧光显微镜照片证明,该方法合成的CdS量子点的荧光发射峰位置在443nm,在紫外灯下能发蓝绿色荧光。透射电子显微镜(TEM)表征结果表明,该仿生法合成的CdS量子点为六方纤锌矿结构。以荧光发射和紫外吸收光谱为性能指标,考察了酿酒酵母生长时期、Cd2+的反应浓度以及反应时间等条件对合成CdS量子点的影响。当酿酒酵母处于生长稳定期初期时,与浓度为0.5mmol.L-1的Cd2+共培养24h后所合成的CdS量子点荧光最强。实验中观察到,换液培养可有效提高酿酒酵母合成CdS量子点的产量。  相似文献   

9.
The stretched exponential photoluminescence decay of the energy-resolved broadband emission of purified and unpurified CdS quantum dots (QDs) made in reverse micelles is characterized as a function of photolysis time and thiol addition. Photolysis is found to proportionately increase both the lifetime and quantum yield of these QDs. This proportionality is consistent with a simple parallel channel model of the decay of the excited states. The ultimate QY of the purified sample is found to be as high as 24%, which is twice that previously reported for this preparation. At −70 °C both the QY and the lifetime increase by more than a factor of two, indicating that thermal quenching limits the QY at room temperature. Finally, the addition of alkanethiols is shown to red-shift and quench the emission while only modestly altering the lifetime. These thiolated QDs show an extremely large temperature dependence of QY, demonstrating stronger thermal quenching than the unfunctionalized QDs.  相似文献   

10.
Green emission ZnO quantum dots were synthesized by an ultrasonic sol–gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.  相似文献   

11.
In this paper, we reported an investigation on a new photoelectrode of quantum dots-sensitized solar cell (QDSC) combining indium-tin-oxide (ITO) mesoporous film and CdS quantum dots (QDs). The ITO mesoporous film was prepared by doctor-blade technique and CdS QDs attached on ITO mesoporous film were synthesized by successive ionic layer adsorption and reaction method. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope, X-ray spectroscopy and UV-vis spectroscopy were used to characterize the samples. The results indicated that the ITO mesoporous film was uniform, crack-free and highly porous. And absorbance in visible region was enhanced after the deposition of CdS QDs on ITO mesoporous film. The photoelectrochemical property of the CdS QDs-sensitized ITO mesoporous film photoelectrode was investigated by forming a photoelectrochemical cell. Photocurrent-voltage measurement showed that the photoelectrode was efficient in the cell as working electrode.  相似文献   

12.
乔泊  赵谡玲  徐征  徐叙瑢 《中国物理 B》2016,25(9):98102-098102
The ZnO quantum dots (QDs) were synthesized with improved chemical solution method. The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm, which are homogeneously dispersed in ethanol. The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect, while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs. The stability of ZnO QDs was studied with different dispersion degrees at 0 ℃ and at room temperature of 25 ℃. The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time. With the ageing of ZnO QDs, the agglomeration is aggravated and the surface defects increase, which leads to the defect emission.  相似文献   

13.
We demonstrate here a simple but very effective approach to decorate anodically grown TiO2 nanotubes (NTs) uniformly with CdS and PbS quantum dots (QDs) deep inside the NT walls. This approach is based on SILAR (successive ionic layer adsorption and reaction) technique assisted with evacuation of the NTs. The basic idea of evacuation is to remove air pockets trapped inside the NTs so as to clear the passage for the penetration of QD precursors down the bottom of the NTs.

  相似文献   


14.
Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.  相似文献   

15.
利用400 nm和800 nm不同波长的低强度飞秒激光,对CdTe和CdTe/CdS核壳量子点溶胶进行激发,研究其稳态和时间分辨荧光性质.800 nm飞秒激光激发下,CdTe和CdTe/CdS核壳量子点产生上转换发光现象,上转换荧光峰与400 nm激发下的荧光峰相比蓝移最多达15 nm,而且蓝移值与荧光量子产率有关.变功率激发确认激发光功率与上转换荧光强度间满足二次方关系,时间分辨荧光的研究表明荧光动力学曲线服从双e指数衰减.提出表面态辅助的双光子吸收模型是低激发强度上转换发光的主要机理.CdTe和CdT 关键词: CdTe量子点 CdTe/CdS核壳量子点 时间分辨荧光 上转换荧光  相似文献   

16.
Experimental study of the hole mobility in polyvinylcarbazole (PVK) films doped with two kinds of nanocrystals, on bare core CdSe and core-shell CdSe/CdS quantum dots, with concentrations ranging from 3 · 1010 to 3 · 1015 cm−3, is presented. The quantum dots investigated were made using colloidal chemistry. The hole mobility was measured using the time-of-flight technique as a function of the applied electrical field in the range 105–106 V/cm and for temperatures from 20°C to 50°C. The transient curves, being featureless on a linear plot, show on a double logarithmic scale a sharp inflection point indicating a dispersive carrier drift process. The recovered values of the mobility are in the range 3 · 10−8–10−6 cm2·V−1·s−1 and their field and temperature dependences can be analyzed formally within the framework of the Gaussian disorder model proposed by B?ssler. The energetic disorder is, within the experimental accuracy, independent of the concentration and type of quantum dots for the CdSe quantum dots at all concentrations and for the CdS/CdSe quantum dots up to 1014 cm−3. The spatial disorder factors are very large (from 5.3 to 8.7) and do not depend in a systematic way upon the type and concentration of quantum dots (QDs). The experiments show that the apparent mobility does not change considerably with concentration, but it was found that the samples with CdSe/CdS quantum dots at concentrations from 1015 to 3 · 1015 cm−3 show a decreased photocurrent response. The dependence of the time-integrated transients (corresponding to the full charge value) upon the quantum-dot concentration has been determined. Differences in total photogenerated charge for pure and doped polymer films imply that the quantum dots of that type are the hole traps with capture times much more smaller than the transit time and with emission times a few orders longer than the transit time. CdSe quantum dots without a shell do not seem to exhibit the same properties as core shells and do not produce considerable changes in the charge transfer, even at a density of 1015 cm−3.  相似文献   

17.
This study reports on the formation of cadmium sulfide (CdS) nanostructures with controlled morphology synthesized via a simple chemical route in surface active agent environment. The effect of organic surface active agents (surfactants) as sodium dodecyl sulfate (SDS), polyethylene glycol (PEG) and cetyltrimethylammonium bromide (CTAB) on structural, morphological, optical and photoelectrochemical properties of CdS thin films have been studied. Our results reveal that the organic surfactants play key roles in tweaking the surface morphology. A compact spongy ball like morphology was observed for the CdS samples grown without organic surfactants. The cauliflower's with nanopetals from the CTAB, whereas crowded star fish like morphology is observed in PEG-mediated growth. Water hyacinth like morphology is tweaked using SDS. Considering the importance of these nanostructures, the growth mechanism has been discussed in details. Additionally, the samples are photoelectrochemically (PEC) active and having a compact surface with a nanoporous structure twig helps in improved photoelectrochemical performance compared to that of CdS deposits from surfactant free solution. This is a simplistic way to tune the morphology using surfactants, which can be applied to other energy conversion applications.  相似文献   

18.
CdTe/CdS core/shell quantum dots (QDs) have been synthesized in an aqueous phase using thioacetamide as a sulfur source. The quantum yield was greatly enhanced by the epitaxial growth of a CdS shell, which was confirmed by X-ray photoelectron spectroscopy (XPS) results. The quantum yield of as-prepared CdTe/CdS core/shell QDs without any post-preparative processing reached 58%. The experimental results illustrate that the QDs with core/shell structure show better photostability than thioglycolic acid (TGA)-capped CdTe QDs. The cyclic voltammograms reveal higher oxidation potentials for CdTe/CdS core/shell QDs than for TGA-capped CdTe QDs, which explains the superior photostability of QDs with a core/shell structure. This enhanced photostability makes these QDs with core/shell structure more suitable for bio-labeling and imaging.  相似文献   

19.
The energy spectrum and corresponding wave functions of a flat quantum dot with elliptic symmetry are obtained exactly. A detailed study is made of the effect of ellipticity on the energy levels and the corresponding wave functions. The analytical behavior of the energy levels in certain limiting cases is obtained.  相似文献   

20.
ZnO:Mn semiconductor quantum dots were prepared by solution casting led microemulsion route. Quantum dots of average size ∼2 nm were noticed in transmission electron micrographs. The present work highlights colour change phenomena (photochromic effect) of quantum dots while subjected to photon illumination. The magneto-optic measurements e.g. magnetic field (H) vs angle of rotation (θ) show step like behavior and is ascribed to the quantum confinement effect of diluted magnetic ZnO:Mn nanostructures. Further, underlying mechanism responsible for exhibiting photochromism and magneto-optic effects are also discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号