首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
We integrate the lattice Boltzmann method (LBM) and immersed boundary method (IBM) to capture the coupling between a rigid boundary surface and the hydrodynamic response of an enclosed particle laden fluid. We focus on a rigid box filled with a Newtonian fluid where the drag force based on the slip velocity at the wall and settling particles induces the interaction. We impose an external harmonic oscillation on the system boundary and found interesting results in the sedimentation behavior. Our results reveal that the sedimentation and particle locations are sensitive to the boundary walls oscillation amplitude and the subsequent changes on the enclosed flow field. Two different particle distribution analyses were performed and showed the presence of an agglomerate structure of particles. Despite the increase in the amplitude of wall motion, the turbulence level of the flow field and distribution of particles are found to be less in quantity compared to the stationary walls. The integrated LBM-IBM methodology promised the prospect of an efficient and accurate dynamic coupling between a non-compliant bounding surface and flow field in a wide-range of systems. Understanding the dynamics of the fluid-filled box can be particularly important in a simulation of particle deposition within biological systems and other engineering applications.  相似文献   

2.
许少锋  楼应侯  吴尧锋  王向垟  何平 《物理学报》2019,68(10):104701-104701
了解疏水表面的滑移规律对其在流动减阻方面的应用至关重要.利用耗散粒子动力学(dissipative particle dynamics, DPD)方法研究了微通道疏水表面的滑移现象.采用固定住的粒子并配合修正的向前反弹机制,构建了DPD固体壁面边界模型,利用该边界模型模拟了平板间的Couette流动.研究结果表明,通过调整壁面与流体间排斥作用强度,壁面能实现从无滑移到滑移的转变,壁面与流体间排斥作用越强,即疏水性越强,壁面滑移越明显,并且滑移长度与接触角之间存在近似的二次函数关系.无滑移时壁面附近密度分布均匀,有滑移时壁面附近存在低密度区域,低密度区域阻碍了动量传递,致使壁面产生滑移.  相似文献   

3.
许少锋  汪久根 《物理学报》2013,62(12):124701-124701
利用耗散粒子动力学(dissipative particle dynamics, DPD)方法模拟了微通道中高分子溶液的Poiseuille流动.研究表明, 微通道中的高分子溶液呈现非牛顿流体特性, 可以用幂律流体来描述流动行为, 高分子浓度越大, 幂律指数n 越小. 高分子链与壁面的流体动力学相互作用以及布朗扩散率梯度控制着高分子链的横向迁移. 由于传统的DPD方法中壁面诱导的流体动力学作用部分被屏蔽, 高分子链将向壁面方向迁移, 并且随着流场增强, 高分子链向壁面方向迁移越明显. 未被屏蔽的流体动力学相互作用和布朗扩散率梯度相互竞争, 使高分子链在微通道内的质心分布呈双峰状, 通道中心处高分子浓度出现局部最小值. 当通道宽度减小、强受限时, 壁面与高分子链间的流体动力学相互作用可能全部被屏蔽, 而布朗扩散运动弱, 高分子向壁面方向有微弱的迁移. 关键词: 耗散粒子动力学 高分子溶液 非牛顿流体 横向迁移  相似文献   

4.
Hydrodynamic coupling of two brownian spheres to a planar surface   总被引:1,自引:0,他引:1  
We describe direct imaging measurements of the collective and relative diffusion of two colloidal spheres near a flat plate. The bounding surface modifies the spheres' dynamics, even at separations of tens of radii. This behavior is captured by a stokeslet analysis of fluid flow driven by the spheres' and wall's no-slip boundary conditions. In particular, this analysis reveals surprising asymmetry in the normal modes for pair diffusion near a flat surface.  相似文献   

5.
Flame acceleration and transition to detonation in submillimetre two-dimensional planar and three-dimensional square channels were simulated by solving the compressible reactive Navier–Stokes equations. A simplified chemical–diffusive model was used to describe the diffusive transport and chemical reaction of a highly reactive mixture, such as stoichiometric ethylene and oxygen in 2D and 3D channels. The walls of the channels were modelled as no-slip and adiabatic. The initial flame acceleration and precursor shock formation were consistent with earlier results. Viscous dissipation in the boundary layer heats the reactants, which have been compressed by the precursor shock. The strength of the precursor shock and the amount of viscous dissipation increase until the temperature of the boundary layer is high enough to ignite the reactants. This produces a spontaneous wave, which, in most of the cases considered, initiates the detonation. The spontaneous wave first forms where the flame attaches to the wall in the planar channels, and forms at the corner where two walls meet in the square channels. In a separate study, the boundary layer also ignited in a computation for a circular tube containing a mixture hydrogen and oxygen represented by a detailed chemical reaction mechanism. The formation of spontaneous waves to the extent studied appears to be robust, and is relatively insensitive to channel geometry, fuel and oxidiser mixture, and the level of detail in the chemical–diffusive models used.  相似文献   

6.
The diffusion of colloidal nanoparticles and nanomolecular aggregates, which plays an important role in various biophysical and physicochemical phenomena, is currently under intense study. Here, we examine the shape and size dependent diffusion of colloidal nano- particles, fused nanoclusters and nanoaggregates using a hybrid fluctuating lattice Boltzmann-Molecular Dynamics method. We use physically realistic parameters characteristic of an aqueous solution, with explicitly implemented microscopic no-slip and full-slip boundary conditions. Results from nanocolloids below 10?nm in radii demonstrate how the volume fraction of the hydrodynamic boundary layer influences diffusivities. Full-slip colloids are found to diffuse faster than no-slip particles. We also characterize the shape dependent anisotropy of the diffusion coefficients of nanoclusters through the Green-Kubo relation. Finally, we study the size dependence of the diffusion of nanoaggregates comprising N?≤?108 monomers and demonstrate that the diffusion coefficient approaches the continuum scaling limit of N?1/3.  相似文献   

7.
Using the analytical Fick-Jacobs approximation formalism and extensive Brownian dynamics simulations we study particle transport through two-dimensional periodic channels with triangularly shaped walls. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. In particular, we analyze the particle mobility and the effective diffusion coefficient. The mechanisms of entropic rectification is revealed in channels with a broken spatial reflection symmetry in presence of hydrodynamically enforced entropic trapping. Due to the combined action of the forcing and the pressure-driven flow field, efficient rectification with a drastically reduced diffusivity is achieved.  相似文献   

8.
A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.  相似文献   

9.
The transport behavior of a system of gravitationally driven superparamagnetic colloidal particles is investigated. The motion of the particles through a narrow channel is governed by magnetic dipole interactions, and a layered structure forms parallel to the walls. The arrangement of the particles is perturbed by diffusion and the motion induced by gravity leading to a density gradient along the channel. Our main result is the reduction of the number of layers. Experiments and Brownian dynamics simulations show that this occurs due to the density gradient along the channel.  相似文献   

10.
Huan Liang 《中国物理 B》2022,31(10):104702-104702
Thermophoresis and diffusiophoresis respectively refer to the directed drift of suspended particles in solutions with external thermal and chemical gradients, which have been widely used in the manipulation of mesoscopic particles. We here study a phoretic-like motion of a passive colloidal particle immersed in inhomogeneous active baths, where the thermal and chemical gradients are replaced separately by activity and concentration gradients of the active particles. By performing simulations, we show that the passive colloidal particle experiences phoretic-like forces that originate from its interactions with the inhomogeneous active fluid, and thus drifts along the gradient field, leading to an accumulation. The results are similar to the traditional phoretic effects occurring in passive colloidal suspensions, implying that the concepts of thermophoresis and diffusiophoresis could be generalized into active baths.  相似文献   

11.
This Letter describes the generation of 2D colloidal lattices in microchannels by coupling the laminar flow of dispersions of spherical colloids and geometrical confinement. We describe a nonequilibrium, convective, mechanism leading to formation of ordered 2D structures of both closed-packed hexagonal and non-closed-packed rhombic symmetries. The number and types of possible lattices is determined by the ratio of the width of the channel to the diameter of the particle. The structures tend to return to a regular lattice after a defect is introduced; that is, for example, they tend to self-repair disorder induced by particle polydispersity, contaminants, and flow instabilities. The stability of different lattices is analyzed numerically for particles with different polydispersity.  相似文献   

12.
We consider the dynamics of H2O monomers in channels of icelike structures using the model of 1D rotator (i.e., a particle with one translational and one rotational degree of freedom). The effect of the channel walls on the motion of the particle is simulated by the interaction of the dipole moment of the particle with a periodic electric field. In this model, the following four regimes of motion are possible: (i) reflection of the particle from the inlet of the channel; (ii) single passage through the channel with a fixed phase; (iii) passage of the particle through the channel after multiple reflections in the channel from its inlet to its outlet; and (iv) reverse motion of the particle after its stay in the channel and multiple reflections from the inlet and outlet. These regimes indicate the possibility of existence of H2O monomers in the form of particles trapped in the channels of icelike formations.  相似文献   

13.
A brief review focusing on low-dimensional colloidal model systems is given describing both simulation studies and complementary experiments, elucidating the interplay between phase behavior, geometric structures, and transport phenomena. These studies address the response of these very soft colloidal systems to perturbations such as uniform or uniaxial compression, laser fields, randomly quenched disorder, and shear deformation caused by moving boundaries. Binary hard-disk mixtures are studied by Monte Carlo simulation, to investigate ordering on surfaces or in monolayers, modeling the effect of a substrate by an external potential. By weak external laser fields the miscibility of the mixture can be controlled, and the underlying mechanism (laser-induced demixing) is clarified. The stability of various space-filling structures is discussed only for the case where no laser fields are present.Hard spheres interacting with repulsive screened Coulomb or dipolar interaction confined in 2D and 3D narrow constrictions are investigated by Brownian Dynamics simulation. With respect to the structural behavior, it is found that layers or planes throughout the microchannel are formed. The arrangement of the particles is disturbed by diffusion, and can also be modified by an external driving force causing a density gradient along the channel. Then the number of layers or planes gets reduced, adjusting to the density gradient, and this self-organized change of order also shows up in the particle velocities. The experimental work that is reviewed here addresses dipolar colloidal particles confined by gravity on a solid substrate on which a set of pinning sites has been randomly distributed. The dynamics of the system is studied by tracking the trajectories of individual particles, and it is found that the mean square displacements of particles that are nearest neighbors of pinned particles are strongly affected by these defects. The influence of the pinning sites on the order and microscopic mechanism of phase transitions in two dimensions is investigated.  相似文献   

14.
唐文来  项楠  张鑫杰  黄笛  倪中华 《物理学报》2015,64(18):184703-184703
设计制作了一种具有非对称弯曲微流道结构的微流控芯片, 搭建实验平台定量表征聚苯乙烯粒子和血细胞沿流道的动态惯性聚焦过程, 并系统研究了流体流速和粒子尺寸对粒子聚焦特性的调控机理. 通过分析粒子荧光图谱和对应量化强度曲线, 将粒子沿流道长度的横向迁移过程分为形成聚焦和平衡位置调整两个阶段, 指出在整个聚焦过程中具有小曲率半径的流道结构起主导作用. 根据全流速段内粒子聚焦特性的演变, 重点分析潜在惯性升力和Dean 曳力的竞争机制, 提出了阐述粒子聚焦流速调控过程的三阶段模型. 进一步比较两种尺寸粒子聚焦位置和聚焦率随流速与流道长度的变化规律, 发现大粒子具有更好的聚焦效果和稳定性, 且两种粒子的相对位置可通过流速进行调整. 最后, 通过分析血细胞在非对称弯流道中的横向迁移特性, 验证了粒子惯性聚焦机理在复杂生物粒子操控方面的适用性. 上述结论为深入研究微流体环境下粒子的运动特性以及开发微流式细胞术等临床即时诊断器件提供了重要参考.  相似文献   

15.
We develop a new simulation method of colloidal suspensions, which we call a "fluid particle dynamics" (FPD) method. This FPD method, which treats a colloid as a fluid particle, removes the difficulties stemming from a solid-fluid boundary condition in the treatment of hydrodynamic interactions between the particles. The importance of interparticle hydrodynamic interactions in the aggregation process of colloidal particles is demonstrated as an example. This method can be applied to a wide range of problems in colloidal science.  相似文献   

16.
The dynamics and stability of premixed hydrogen-air flames in square microchannels with heated walls were investigated through three-dimensional direct numerical simulations. The inlet velocity and equivalence ratio were 1.5 m/s and 0.5. The effect of the wall temperature gradient characteristics on the flame dynamics and stability was examined varying the width and location of the wall temperature gradient for a channel height of 1.5 mm. Five distinct flame modes were observed at different wall temperature profiles: flame with repetitive extinction-ignition (FREI), pulsating flame, laterally oscillating flame, spinning flame, and steady flame modes. Furthermore, transitions between these flame modes were observed for specific inflow and boundary conditions. The effect of the channel height on the flame stability was investigated by varying the channel height from 1.0 mm to 1.677 mm for a fixed wall temperature gradient. As the channel height was increased, four of the flame modes, namely, FREI, laterally oscillating flame, spinning flame, and steady flame modes appeared sequentially. To determine whether this sequential appearance was associated with the variation of the wall heat loss, the maximum wall temperature was changed by small amounts. For a lower wall temperature, the laterally oscillating flame mode transitioned to the FREI mode, and for a higher wall temperature, unstable flame modes such as the FREI and laterally oscillating flame modes disappeared, resulting in stable flame.  相似文献   

17.
We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson–Boltzmann model for electrokinetic flows in microchannels. Our results show that for homogeneously charged long channels, the Poisson–Boltzmann model is applicable for a wide range of electric double layer thickness. For the electric potential distribution, the Poisson–Boltzmann model can provide good predictions until the electric double layers fully overlap, meaning that the thickness of the double layer equals the channel width. For the electroosmotic velocity, the Poisson–Boltzmann model is valid even when the thickness of the double layer is 10 times of the channel width. For heterogeneously charged microchannels, a higher zeta potential and an enhanced velocity field may cause the Poisson–Boltzmann model to fail to provide accurate predictions. The ionic diffusion coefficients have little effect on the steady flows for either homogeneously or heterogeneously charged channels. However the ionic valence of solvent has remarkable influences on both the electric potential distribution and the flow velocity even in homogeneously charged microchannels. Both theoretical analyses and numerical results indicate that the valence and the concentration of the counter-ions dominate the Debye length, the electrical potential distribution, and the ions transport. The present results may improve the understanding of the electrokinetic transport characteristics in microchannels.  相似文献   

18.
A method to simulate bodies suspended in a Lattice Boltzmann solvent is proposed. It is based on a generalized reaction force that enforces no-slip boundary conditions at the fluid–body interface as the limiting case of an iterative procedure. A smooth version of the Heaviside function allows to treat spherical particles of arbitrary size and produces smooth hydrodynamic forces as particles move in the continuum. Numerical tests demonstrate the accuracy of the method in reproducing the hydrodynamic field around a single particle and the fluid-mediated forces between pairs of particles. The drag force experienced by a particle moving in a straight channel and at various Reynolds numbers is studied as a non-trivial testcase.  相似文献   

19.
Colloidal particle submerged in a non-equilibrium fluid with a concentration gradient of solutes experiences diffusio-phoresis. Such directional transport originates from the driving forces that exert on the fluid in a microscopic boundary layer surrounding the colloid. Based on a simple model of spherical colloid fixed in a concentration gradient of solutes, molecular dynamics simulations are performed to determine the interaction parameters that maximise the diffusio-phoretic mobility, which cannot be properly measured by conventional continuum theory. The diffusio-phoretic mobility is found to depend non-monotonically on the strength of the interaction between the colloid and solutes, due to the presence of bound solutes within adsorption shell that cannot contribute to diffusio-phoresis. The results also show that the phoretic mobility depends sensitively on the density of solutes in bulk, due to the uneven distribution of excess particles surrounding the colloid at a microscopic level. The simulations suggest that diffusio-phoresis may in principle be applied to the selective transport, separation and purification for colloidal systems. By substituting the spherical colloid with other realistic macromolecules, the model could provide results that are quantitatively comparable with experiments.  相似文献   

20.
本文采用反射式光纤探头,测量了循环床膜式壁管子和鳍片附近的颗粒浓度动态分布,并且引人时序分析方法处理采样数据。研究表明,膜式壁附近的颗粒分布是不均匀的;在膜式壁附近存在颗粒流动的再分布过程;颗粒浓度波动的能量分布主要集中在低频区域;根据AR模型阶数,本文定量地将膜式壁附近的颗粒流动划分为;剪切区、沉积区、再分布区和槽区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号