首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we presented a stable two-dimensional ruthenium dioxide monolayer by using first-principles calculations within density functional theory. In contrast to ordinary hexagonal and octahedral structures of metal dichalcogenides, RuO2 is stable in the distorted phase of the structure as a result of occurring charge density wave. A comprehensive analysis including the calculation of vibration frequencies, mechanical properties, and ab initio molecular dynamics at 300?K affirms that RuO2 monolayer structure is stable dynamically and thermally and convenient for applications at room temperature. We also investigated the electronic and optical properties of RuO2 and it is found that RuO2 has of 0.74?eV band gap which is in the infrared region and very suitable for infrared detectors.  相似文献   

2.
俞洋  张文杰  赵婉莹  林贤  金钻明  刘伟民  马国宏 《物理学报》2019,68(1):17201-017201
单层过渡金属硫化物由于其特有的激子效应以及强自旋-谷耦合性质,在光电子学及谷电子学等方面有着很广阔的应用前景.利用超快时间分辨光谱,本文系统地比较了两类钨基单层硫化物(WS_2和WSe_2)的A-激子动力学和谷自旋弛豫特性.实验结果表明, WS_2单层膜的A-激子弛豫表现为双指数过程,而对于WSe_2,其A-激子衰减表现为三指数过程,且激子的寿命远长于前者. WS_2谷自旋极化弛豫表现为单指数衰减,其寿命约0.35 ps,主要由电子-空穴交换作用所主导.而对于WSe_2,谷自旋弛豫表现出双指数弛豫特性:一个寿命为0.5 ps的快过程和一个寿命为28 ps的慢过程.快过程的弛豫来源于电子-空穴交换作用,而慢过程则由于自旋晶格散射形成暗激子的过程.通过调谐抽运光波长,进一步证实WSe_2较WS_2更容易形成暗激子.  相似文献   

3.
Junyu Zong 《中国物理 B》2022,31(10):107301-107301
As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.  相似文献   

4.
Recently, modifications of charge density wave(CDW) in two-dimensional(2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides(TMDCs). Optical, electrical transport measurements and scanning tunneling microscopy uncover the enormous difference on the many-body states when the thickness is reduced down to monolayer. However, the CDW in quasi-one-dimensional(1D) materials like transition metal trichalcogenides(TMTCs) is yet to be explored in low dimension whose mechanism is likely distinct from their quasi-2D counterparts.Here, we report a systematic study on the CDW properties of titanium trisulfide(TiS_3). Two phase transition temperatures were observed to decrease from 53 K(103 K) to 46 K(85 K) for the bulk and 15-nm thick nanoribbon, respectively,which arises from the increased fluctuation effect across the chain in the nanoribbon structure, thereby destroying the CDW coherence. It also suggests a strong anisotropy of CDW states in quasi-1D TMTCs which is different from that in TMDCs.Remarkably, by using back gate of-30 V ~ 70 V in 15-nm device, we can tune the second transition temperature from110 K(at-30 V) to 93 K(at 70 V) owing to the altered electron concentration. Finally, the optical approach through the impinging of laser beams on the sample surface is exploited to manipulate the CDW transition, where the melting of the CDW states shows a strong dependence on the excitation energy. Our results demonstrate TiS_3 as a promising quasi-1D CDW material and open up a new window for the study of collective phases in TMTCs.  相似文献   

5.
Jian-Min Wu 《中国物理 B》2022,31(5):57803-057803
Monolayer transition metal dichalcogenides favor the formation of a variety of excitonic quasiparticles, and can serve as an ideal material for exploring room-temperature many-body effects in two-dimensional systems. Here, using mechanically exfoliated monolayer WS2 and photoluminescence (PL) spectroscopy, exciton emission peaks are confirmed through temperature-dependent and electric-field-tuned PL spectroscopy. The dependence of exciton concentration on the excitation power density at room temperature is quantitatively analyzed. Exciton concentrations covering four orders of magnitude are divided into three stages. Within the low carrier concentration stage, the system is dominated by excitons, with a small fraction of trions and localized excitons. At the high carrier concentration stage, the localized exciton emission from defects coincides with the emission peak position of trions, resulting in broad spectral characteristics at room temperature.  相似文献   

6.
Hui Chen 《中国物理 B》2022,31(9):97405-097405
Recently, the discovery of vanadium-based kagome metal AV3Sb5 (A= K, Rb, Cs) has attracted great interest in the field of superconductivity due to the coexistence of superconductivity, non-trivial surface state and multiple density waves. In this topical review, we present recent works of superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5. We start with the unconventional charge density waves, which are thought to correlate to the time-reversal symmetry-breaking orders and the unconventional anomalous Hall effects in AV3Sb5. Then we discuss the superconductivity and the topological band structure. Next, we review the competition between the superconductivity and charge density waves under different conditions of pressure, chemical doping, thickness, and strains. Finally, the experimental evidence of pseudogap pair density wave is discussed.  相似文献   

7.
Zhe Wang 《中国物理 B》2021,30(11):116401-116401
Monolayer transition metal dichalcogenides can normally exist in several structural polymorphs with distinct electrical, optical, and catalytic properties. Effective control of the relative stability and transformation of different phases in these materials is thus of critical importance for applications. Using density functional theory calculations, we investigate the effects of low-work-function metal substrates including Ti, Zr, and Hf on the structural, electronic, and catalytic properties of monolayer MoS2 and WS2. The results indicate that such substrates not only convert the energetically stable structure from the 1H phase to the 1T'/1T phase, but also significantly reduce the kinetic barriers of the phase transformation. Furthermore, our calculations also indicate that the 1T' phase of MoS2 with Zr or Hf substrate is a potential catalyst for the hydrogen evolution reaction.  相似文献   

8.
《中国物理 B》2021,30(7):76201-076201
Layered lanthanum silver antimonide LaAgSb_2 exhibits both charge density wave(CDW) order and Dirac-cone-like band structure at ambient pressure.Here,we systematically investigate the pressure evolution of structural and electronic properties of LaAgSb_2 single crystal.We show that the CDW order is destabilized under compression,as evidenced by the gradual suppression of magnetoresistance.At P_C~22 GPa,synchrotron x-ray diffraction and Raman scattering measurements reveal a structural modification at room-temperature.Meanwhile,the sign change of the Hall coefficient is observed at 5 K.Our results demonstrate the tunability of CDW order in the pressurized LaAgSb_2 single crystal,which can be helpful for its potential applications in the next-generation devices.  相似文献   

9.
闫静  单磊  王越  肖志力  闻海虎 《中国物理 B》2008,17(6):2229-2235
Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.  相似文献   

10.
We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates.  相似文献   

11.
We propose a physical model based on disordered (a hole punched inside a material) monolayer transition metal dichalcogenides (TMDs) to demonstrate a large‐gap quantum valley Hall insulator. We find an emergence of bound states lying inside the bulk gap of the TMDs. They are strongly affected by spin–valley coupling, rest‐ and kinetic‐mass terms and the hole size. In addition, in the whole range of the hole size, at least two in‐gap bound states with opposite angular momentum, circulating around the edge of the hole, exist.Their topological insulator (TI) feature is analyzed by the Chern number, characterized by spacial distribution of their probabilities and confirmed by energy dispersion curves (energy vs. angular momentum). It not only sheds light on overcoming low‐temperature operating limitation of existing narrow‐gap TIs, but also opens an opportunity to realize valley‐ and spin‐qubits. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
The influence of defects on the phase behaviour of Rb-doped K2ZnCl4-single crystals is studied using high-resolution gamma-ray diffractions in combination with in situ dielectric impedance spectroscopy. It is shown that the interaction between strain fields near discommensurations within the incommensurate phase and impurity ions lead to the formation of defect density waves. On rapid cooling, these are unable to relax and persist within the commensurate phase thus acting as an intrinsic memory. Hence, a metastable re-entrant incommensurate phase is observed on heating at temperatures well below the normal lock-in temperature that is found in equilibrium studies.  相似文献   

13.
吴元军  申超  谭青海  张俊  谭平恒  郑厚植 《物理学报》2018,67(14):147801-147801
以二硫化钼(MoS_2)为代表的过渡金属硫属化物属于二维层状材料,样品可以薄至单层.单层MoS_2是一种直接带隙半导体,在纳米逻辑器件、高速光电探测、纳米激光等领域具有广阔的应用前景.在实际应用中,温度是影响半导体材料能带结构和性质的主要因素之一.因此研究单层二维材料能带的温度依赖特性对理解其物理机理以及开展器件应用具有重要的意义.目前,在广泛采用的测量单层MoS_2反射谱的研究中,激子峰往往叠加在一个很强的光谱背底上,难以准确分辨激子的峰位和线宽.基于自行搭建的显微磁圆二向色谱系统,研究了单层MoS_2在65—300 K温度范围内的反射谱和磁圆二向色谱,结果表明磁圆二向色谱在研究单层材料激子能量和线宽方面具有明显的优势.通过分析变温的磁圆二向色谱,得到了不同温度下的A,B激子的跃迁能量和线宽.通过对激子能量和线宽的温度依赖关系进行拟合,进一步讨论了声子散射对激子线宽的影响.  相似文献   

14.
15.
Strong two‐photon absorption (TPA) in monolayer MoS2 is demonstrated in contrast to saturable absorption (SA) in multilayer MoS2 under the excitation of femtosecond laser pulses in the near‐infrared region. MoS2 in the forms of monolayer single crystal and multilayer triangular islands are grown on either quartz or SiO2/Si by employing the seeding method through chemical vapor deposition. The nonlinear transmission measurements reveal that monolayer MoS2 possesses a nonsaturation TPA coefficient as high as ∼(7.62 ±0.15) ×103 cm/GW, larger than that of conventional semiconductors by a factor of 103. As a result of TPA, two‐photon pumped frequency upconverted luminescence is observed directly in the monolayer MoS2. For the multilayer MoS2, the SA response is demonstrated with the ratio of the excited‐state absorption cross section to ground‐state cross section of ∼0.18. In addition, the laser damage threshold of the monolayer MoS2 is ∼97 GW/cm2, larger than that of the multilayer MoS2 of ∼78 GW/cm2.

  相似文献   


16.
Recently,transition-metal-based kagome metals have aroused much research interest as a novel platform to explore exotic topological quantum phenomena.Here we report on the synthesis,structure,and physical properties of a bilayer kagome lattice compound V3Sb2.The polycrystalline V3Sb2 samples were synthesized by conventional solid-state-reaction method in a sealed quartz tube at temperatures below 850℃.Measurements of magnetic susceptibility and resistivity revealed consistently a density-wave-like transition at Tdw≈160 K with a large thermal hysteresis,even though some sample-dependent behaviors were observed presumably due to the different preparation conditions.Upon cooling through Tdw,no strong anomaly in lattice parameters and no indication of symmetry lowering were detected in powder x-ray diffraction measurements.This transition can be suppressed completely by applying hydrostatic pressures of about 1.8 GPa,around which no sign of superconductivity was observed down to 1.5 K.Specific-heat measurements revealed a relatively large Sommerfeld coefficientγ=18.5 mJ·mol-1·K-2,confirming the metallic ground state with moderate electronic correlations.Density functional theory calculations indicate that V3Sb2 shows a non-trivial topological crystalline property.Thus,our study makes V3Sb2 a new candidate of metallic kagome compound to study the interplay between density-wave-order,nontrivial band topology,and possible superconductivity.  相似文献   

17.
Xian-Dong Li 《中国物理 B》2022,31(11):110304-110304
The Janus monolayer transition metal dichalcogenides (TMDs) $MXY$ ($M={\rm Mo}$, W, $etc$. and $X, Y={\rm S}$, Se, $etc$.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature $T_{\rm c}$, of which the Fermi surface (FS) sheets centered around both $ărGamma$ and $K (K')$ points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant $s + f + p$-wave mixed superconducting state, which is fully gapped and topologically nontrivial, $i.e.$, a $\mathbb{Z}_2$ topological state. On the other hand, a time-reversal symmetry breaking $d + p + f$-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number $|C|=6$ at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.  相似文献   

18.
Mechanisms of anomalous magnetic and transport properties in CeTe2 observed recently on single-crystal samples are studied by comparing with the nonmagnetic reference material LaTe2, as well as other typical low carrier-density systems such as Ce monopnictides, doped Eu chalcogenides and Yb4As3. The present system is unique on the point of low-carrier semimetal due to CDW of near perfect nesting, which is shown to be nearly independent of the spin–orbit splitting. The large residual resistivity indicates the giant molecular scattering due to excitonic states forming the distorted Wigner crystal, similar to Yb4As3. At low temperatures, induced magnetic polarons cause unusual novel transport properties with a sharp peak of resistivity without any anomaly on other physical properties. This is attributed to a sharp glassy transition from an antiferromagnetic short-range ordering to the ferromagnetic ordering of the magnetic polarons within each CeTe double layer sandwiching the mono Te layer. It is shown that, similar to Ce monopnictides, the type strong nonlinear p–f mixing is the origin of the main anomalous magnetic properties. Lattice polarons are essential for the stable excitonic states in LaXc2, as well as in CeTe2 in the ferromagnetic state.  相似文献   

19.
20.
An approach to calculate the nuclear transition charge density (TCD) within the framework of the microscopic sdIBM-2 is presented and applied to the 190Os first. It was found that the TCD as well as the spectrum and some reduced E2 transition matrix elements in 190Os can be reproduced quite satisfactorily on the same microscopic footing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号