首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AHMET BEKIR  ÖZKAN GÜNER 《Pramana》2013,81(2):203-214
In this paper, we obtain the 1-soliton solutions of the (3?+?1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation and the generalized Benjamin equation. By using two solitary wave ansatz in terms of sech p and $\tanh^{p}$ functions, we obtain exact analytical bright and dark soliton solutions for the considered model. These solutions may be useful and desirable for explaining some nonlinear physical phenomena in genuinely nonlinear dynamical systems.  相似文献   

2.
Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev–Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.  相似文献   

3.
In this article, we consider the(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP)equation in fluids. We show that a variety of nonlinear localized waves can be produced by the breath wave of the GKP model, such as the(oscillating-) W-and M-shaped waves, rational W-shaped waves, multi-peak solitary waves,(quasi-) Bell-shaped and W-shaped waves and(quasi-) periodic waves. Based on the characteristic line analysis and nonlinear superposition principle, we give the transition conditions analytically. We find the interesting dynamic behavior of the converted nonlinear waves, which is known as the time-varying feature. We further offer explanations for such phenomenon. We then discuss the classification of the converted solutions. We finally investigate the interactions of the converted waves including the semi-elastic collision, perfectly elastic collision, inelastic collision and one-off collision. And the mechanisms of the collisions are analyzed in detail. The results could enrich the dynamic features of the high-dimensional nonlinear waves in fluids.  相似文献   

4.
The residual symmetry relating to the truncated Painlev′e expansion of the Kadomtsev–Petviashvili(KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.  相似文献   

5.
毛杰健  杨建荣 《中国物理》2006,15(12):2804-2808
Using the solution of general Korteweg--de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev--Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.  相似文献   

6.
7.
In this paper, we investigate a (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation in fluid dynamics. Based on the Hirota method, we give a bilinear auto-Bäcklund transformation. Via the truncated Painlevé expansion, we get a Painlevé-type auto-Bäcklund transformation. With the aid of the symbolic computation, we derive some one- and two-kink soliton solutions. We present the oblique and parallel elastic interactions between the two-kink solitons. Via the extended homoclinic test technique, we construct some breather-wave solutions. Besides, we derive some lump solutions with the periods of the breather-wave solutions to the infinity. We observe that the shapes of a breather wave and a lump remain unchanged during the propagation. Based on the polynomial-expansion method, travelling-wave solutions are constructed.  相似文献   

8.
In this paper, we obtained the exact breather-type kink soliton and breather-type periodic soliton solutions for the (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation using the extended homoclinic test technique. Some new nonlinear phenomena, such as kink and periodic degeneracies, are investigated. Using the homoclinic breather limit method, some new rational breather solutions are found as well. Meanwhile, we also obtained the rational potential solution which is found to be just a rogue wave. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

9.
In this paper, we consider the(2+1)-dimensional Chaffee–Infante equation, which occurs in the fields of fluid dynamics, high-energy physics, electronic science etc. We build B?cklund transformations and residual symmetries in nonlocal structure using the Painlevé truncated expansion approach. We use a prolonged system to localize these symmetries and establish the associated one-parameter Lie transformation group. In this transformation group, we deliver new exact solution profiles via the combi...  相似文献   

10.
In this paper, we present a formalism to generate a family of interior solutions to the Einstein–Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner–Nordström space–time. By reducing the Einstein–Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.  相似文献   

11.
We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropriate transformations, two kinds of bilinear forms are derived. Employing the two bilinear equations, dynamical behaviors of nine district solutions for this equation are discussed in detail, including bright rogue wave-type solution, dark rogue wave-type solution, bright W-shaped solution, dark W-shaped rational solution, generalized rational solution and bright-fusion, darkfusion, bright-fission, and dark-fission resonance solutions. In addition, the generalized rational solutions, which depending on two arbitrary parameters, have an interesting structure: splitting from two peaks into three peaks.  相似文献   

12.
With the help of the similarity transformation and the solvable stationary nonlinear Schrödinger equation (NLSE),we obtain exact chirped and chirp-free self-similar cnoidal wave and solitary wave solutions of the generalized NLSE exhibitingspatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. As an example, we investigate their propagationdynamics in a nonlinear optical system, and present a series of interesting properties of optical waves.  相似文献   

13.
14.
In this paper,we give the general interaction solution to the(3+1)-dimensional Jimbo–Miwa equation.The general interaction solution contains the classical interaction solution.As an example,by using the generalized bilinear method and symbolic computation by using Maple software,novel interaction solutions under certain constraints of the(3+1)-dimensional Jimbo–Miwa equation are obtained.Via three-dimensional plots,contour plots and density plots with the help of Maple,the physical characteristics and structures of these waves are described very well.These solutions greatly enrich the exact solutions to the(3+1)-dimensional Jimbo–Miwa equation found in the existing literature.  相似文献   

15.
We obtain exact spatiotemporal periodic traveling wave solutions to the generalized (3+1)-dimensional nonlinear Schr?dinger equation with distributed coefficients. We utilize these solutions to construct analytical light bullet soliton solutions of nonlinear optics.  相似文献   

16.
Under investigation in this paper is a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid mechanics. We derive the mixed lump-stripe waves, bright mixed rogue wave-stripe, dark mixed rogue wave-stripe and dark rogue waves solutions by virtue of the symbolic computation. We observe the fission and fusion phenomena between the lump and one-stripe wave through the mixed-stripe wave solutions. Then, we observe that the influence of l1, l2, l3, l4, l5, l6, l7 and l8 on the mixed lump-stripe waves, where l1 and l2 represent the dispersion and nonlinear effects, l3, l6, l7 and l8 are the perturbed effects, while l4 and l5 stand for the disturbed wave velocities along the transverse spatial coordinates y and z, respectively. We graphically present the interaction between a rogue wave and a pair of stripe waves through the mixed rogue wave-stripe solutions. We derive a dark mixed rogue wave-stripe when l1 < 0. We study the influence of l1, l2, l3, l4, l5, l6, l7 and l8 on the rogue wave and a pair of stripe waves. We present the dark rogue wave with certain parameters and observe that two stripe waves merge into one stripe wave.  相似文献   

17.
Different resonance constraints enrich the behavior of soliton solutions. The soliton molecules, which are the bound states of solitons, can be set off by the velocity resonance. The lump waves, which are localized in all directions in space, are theoretically regarded as a limit form of soliton in some ways. In this paper, a (2+1)-dimensional Sharma–Tasso–Olver–Burgers (STOB) equation is investigated. Soliton (kink) molecule, half periodic kink(HPK) and HPK molecule are studied. Then the lump solution is obtained and the interactions between lump and kink molecule are discussed. The kink molecule-lump solutions exhibit a fusion phenomenon and a rogue (instanton) phenomenon, respectively.  相似文献   

18.
The famous Kadomtsev-Petviashvili(KP)equation 1 s a classical equation In soliton tneory.A Backlund transformation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painlev6 expansion in this paper.One-parameter group transformations and one-parameter subgroup-invariant solutions for the extended KP equation are obtained.The consistent Riccati expansion(CRE) solvability of the KP equation is proved.Some interaction structures between soliton-cnoidal waves are obtained by CRE and several evolution graphs and density graphs are plotted.  相似文献   

19.
20.
The nonlocal symmetry of the Sawada–Kotera(SK) equation is constructed with the known Lax pair. By introducing suitable and simple auxiliary variables, the nonlocal symmetry is localized and the finite transformation and some new solutions are obtained further. On the other hand, the group invariant solutions of the SK equation are constructed with the classic Lie group method.In particular, by a Galileo transformation some analytical soliton-cnoidal interaction solutions of a asymptotically integrable equation are discussed in graphical ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号