首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
染料敏化太阳电池(DSC)作为新型太阳电池自问世以来受到了广泛关注, 其系统内部的接触界面尤其是TiO2/染料/电解质界面一直是该领域的研究热点. 光敏染料的吸附以及电子的注入、传输和复合都发生在该界面, 其界面性质对DSC性能具有很大影响. 对染料敏化太阳电池中TiO2/染料/电解质界面进行修饰可以有效抑制染料聚集和电子复合, 提高电子的注入效率与传输速率; 同时, 对TiO2导带边的位置及染料吸附等也产生一定的影响, 最终提高电池的光电转换效率和稳定性. 本文主要从不同的修饰途径详细评述了TiO2/染料/电解质界面修饰方法及机理研究进展,包括TiO2光阳极的修饰改性、染料溶液中共吸附剂的引入和多种染料共敏化处理以及电解质中不同功能添加剂的应用. 指出了这些修饰方法目前存在的主要问题, 并对未来的发展方向进行了展望.  相似文献   

2.
A first-principles calculation based on the density functional theory (DFT) was used to investigate the energetic and electronic properties of Si-doped anatase TiO2 with various silicon concentrations. The theoretical calculations showed that with Si-doping the valence band and conduction band of TiO2 became hybrid ones with large dispersion, which could benefit the mobility of the photo-generated carriers. This result is in agreement with the experimental reports. At lower doping levels, the band gap of Si-doped anatase TiO2 decreases about 0.2 eV. With the increase of silicon concentration, the band gap increases gradually and larger formation energies are required during the synthesis of Si-doped TiO2.  相似文献   

3.
A range of solution-processed organic and hybrid organic−inorganic solar cells, such as dye-sensitized and bulk heterojunction organic solar cells have been intensely developed recently. TiO2 is widely employed as electron transporting material in nanostructured TiO2 perovskite-sensitized solar cells and semiconductor in dye-sensitized solar cells. Understanding the optical and electronic mechanisms that govern charge separation, transport and recombination in these devices will enhance their current conversion efficiencies under illumination to sunlight. In this work, density functional theory with Perdew-Burke Ernzerhof (PBE) functional approach was used to explore the optical and electronic properties of three modeled TiO2 brookite clusters, (TiO2)n=5,8,68. The simulated optical absorption spectra for (TiO2)5 and (TiO2)8 clusters show excitation around 200–400 nm, with (TiO2)8 cluster showing higher absorbance than the corresponding (TiO2)5 cluster. The density of states and the projected density of states of the clusters were computed using Grid-base Projector Augmented Wave (GPAW) and PBE exchange correlation functional in a bid to further understand their electronic structure. The density of states spectra reveal surface valence and conduction bands separated by a band gap of 1.10, 2.31, and 1.37 eV for (TiO2)5, (TiO2)8, and (TiO2)68 clusters, respectively. Adsorption of croconate dyes onto the cluster shifted the absorption peaks to higher wavelengths.  相似文献   

4.
Quasiparticle band structures of the defective anatase TiO2 bulk with O vacancy, Ti interstitial and H interstitial are investigated by the GW method within many-body Green's function theory. The computed direct band gap of the perfect anatase bulk is 4.3 eV, far larger than the experimental optical absorption edge (3.2 eV). We found that this can be ascribed to the inherent defects in anatase which drag the conduction band (CB) edge down. The occupied band-gap states induced by these defects locate close to the CB edge, excluding the possible contribution of these bulk defects to the deep band-gap state below CB as observed in experiments.  相似文献   

5.
Titanium dioxide (TiO2), co-deposited with Fe and N, is first implanted with Fe by a metal plasma ion implantation (MPII) process and then annealed in N2 atmosphere at a temperature regime of 400-600 °C. First-principle calculations show that the (Fe, N) co-deposited TiO2 films produced additional band gap levels at the bottom of the conduction band (CB) and on the top of the valence band (VB). The (Fe, N) co-deposited TiO2 films were effective in both prohibiting electron-hole recombination and generating additional Fe-O and N-Ti-O impurity levels for the TiO2 band gap. The (Fe, N) co-deposited TiO2 has a narrower band gap of 1.97 eV than Fe-implanted TiO2 (3.14 eV) and N-doped TiO2 (2.16 eV). A significant reduction of TiO2 band gap energy from 3.22 to 1.97 eV was achieved, which resulted in the extension of photocatalytic activity of TiO2 from UV to Vis regime. The photocatalytic activity and removal rate were approximately two-fold higher than that of the Fe-implanted TiO2 under visible light irradiation.  相似文献   

6.
Satellite structure has been observed at about 3.1, 5.4, 6.4 and 14.5 eV below the main peaks in the X-ray photoelectron spectra of the Ti and O levels of TiO2. These satellites arise from transitions, accompanying primary photoemission, between predominantly O2p states of the ligand and various excited states in the conduction band. The energies found fit the transitions calculated by Daude et al. for an electronic band structure calculated by a combined tight-binding and pseudopotential method.  相似文献   

7.
The donor-like surface states at the TiO2/H2O interface were detected by measuring the capacitance under UV illumination. The surface states were located 0.65 eV below the bottom of the conduction band of TiO2. The density of surface states increased by increasing the light intensity. The surface states were observed under UV illumination but disappeared in the dark  相似文献   

8.
采用溶胶-凝胶法制备出纯TiO2和不同浓度Sn4+离子掺杂的TiO2光催化剂(TiO2-Snx%, x%代表Sn4+离子掺杂的TiO2样品中Sn4+离子摩尔分数). 利用X 射线衍射(XRD)、X 射线光电子能谱(XPS)和表面光电压谱(SPS)确定了TiO2-Snx%催化剂的晶相结构和能带结构, 结果表明: 当Sn4+离子浓度较低时, Sn4+离子进入TiO2晶格, 取代并占据Ti4+离子的位置, 形成取代式掺杂结构(Ti1-xSnxO2), 其掺杂能级在导带下0.38 eV处; 当Sn4+离子浓度较高时, 掺入的Sn4+离子在TiO2表面生成金红石SnO2, 形成TiO2和SnO2复合结构(TiO2/SnO2), SnO2的导带位于TiO2导带下0.33 eV处. 利用瞬态光电压谱和荧光光谱研究了TiO2-Snx%催化剂光生载流子的分离和复合的动力学过程, 结果表明, Sn4+离子掺杂能级和表面SnO2能带存在促进光生载流子的分离, 有效地抑制了光生电子与空穴的复合; 然而, Sn4+离子掺杂能级能更有效地增加光生电子的分离寿命, 提高了光生载流子的分离效率, 从而揭示了TiO2-Snx%催化剂的光催化机理.  相似文献   

9.
Ternary chalcogenide silver gallium sulfide (AgGaS2), which has an orthorhombic structure, was already synthesized. However, the feasibility of using the crystal for hydrogen production through photocatalytic water splitting has not been explored. Here, we systematically investigated the structural, electronic, optical, and transport properties of XGaS2 (X = Ag or Cu) with orthorhombic structure by using the first principles calculations. The band alignments indicate that all calculated absolute potentials of the valence and conduction band edges met the requirement of photocatalytic water splitting reaction. The presence of 2.64 and 2.56 eV direct band energy gaps and obvious optical absorption within the visible light range imply that XGaS2 can correspond to solar light. Moreover, the large electron mobility and the obvious differences between electron mobility and hole mobility were identified in XGaS2 structures, which is beneficial to the photocatalytic performance of the water splitting reaction. The present findings can provide a helpful reference for developing novel photocatalytic materials with XGaS2 for hydrogen generation from water splitting under irradiation of visible light.  相似文献   

10.
二氧化钛(TiO2)具有化学稳定性高、无毒、价格低廉、来源广泛及光电性能优异等优点,被广泛应用于太阳能电池和光催化等领域,尤其是在污染物的光催化降解方面,可很好地解决当前的环境污染问题。但一方面受带隙宽度限制,使其对太阳光的利用率不足5%,不能充分利用太阳光中的可见光;另一方面由于光生电子-空穴容易结合,催化效率低,从而使TiO2的实际应用受到限制。因此必须采取合适的措施,一方面要增强TiO2对可见光的吸收,提高对太阳光的利用率;另一方面要抑制光生电子-空穴的复合,提高光催化效率。目前越来越多的科学家通过控制TiO2的形貌、晶型、特殊晶面暴露等手段来提高TiO2光生电子-空穴的传输速率和光电转换效率。本文主要综述了近年来在TiO2光催化剂的特殊形貌和特殊晶面暴露等方面的研究进展,对未来的研究和发展方向作了展望。  相似文献   

11.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

12.
In order to provide a direction in molecular design of catechol (Cat) dyes for type II dye‐sensitized solar cells (DSSCs), the dye‐to‐TiO2 charge‐transfer (DTCT) characteristics of Cat dyes with various substituents and their photovoltaic performance in DSSCs are investigated. The Cat dyes with electron‐donating or moderately electron‐withdrawing substituents exhibit a broad absorption band corresponding to DTCT upon binding to TiO2 films, whereas those with strongly electron‐withdrawing substituents exhibit weak DTCT. This study indicates that the introduction of a moderately electron‐withdrawing substituent on the Cat moiety leads to not only an increase in the DTCT efficiency, but also the retardation of back electron transfer. This results in favorable conditions for the type II electron‐injection pathway from the ground state of the Cat dye to the conduction band of the TiO2 electrode by the photoexcitation of DTCT bands.  相似文献   

13.
程辉  姚江宏  曹亚安 《物理化学学报》2012,28(11):2632-2640
采用溶胶-凝胶法制备出In 表面修饰的TiO2 (TiO2-Inx%)纳米粒子, x%代表在In 掺杂的TiO2样品中In3+与In3+和Ti4+离子摩尔百分含量. 利用二(四丁基铵)顺式-双(异硫氰基)双(2,2''-联吡啶-4,4''-二羧酸)钌(II)(N719)作为敏化剂, 制备出N719/TiO2/FTO (氟掺杂锡氧化物)和N719/TiO2-Inx%/FTO染料敏化薄膜电极. 光电转换效率实验表明, 在薄膜电极+0.5 mol·L-1 LiI+0.05 mol·L-1 I2的三甲氧基丙腈(MPN)溶液+Pt 光电池体系中,N719/TiO2-Inx%/FTO薄膜电极的光电转换效率均高于N719/TiO2/FTO, 其中N719/TiO2-In0.1%/FTO的光电转换效率比N719/TiO2/FTO提高了20%. 利用X 射线衍射(XRD)、X 射线光电子能谱(XPS)、漫反射吸收光谱(DRS)、荧光(PL)光谱和表面光电流作用谱确定了TiO2-Inx%样品中In3+离子的存在方式和能带结构; 利用表面光电流作用谱研究了N719/TiO2-Inx%/FTO薄膜电极的光致界面电荷转移过程. 结果表明, In3+离子在TiO2表面形成O-In-Cln (n=1, 2)物种, 该物种的表面态能级位于导带下0.3 eV处; 在光电流产生过程中, O-In-Cln (n=1, 2)表面态能级有效地抑制了光生载流子在TiO2-Inx%层的复合, 促进了阳极光电流的增加, 从而导致N719/TiO2-Inx%/FTO薄膜电极的光电转化效率高于N719/TiO2/FTO, 并进一步讨论了光致界面电荷转移的机理.  相似文献   

14.
P‐type Cu2O has been long considered as an attractive photocatalyst for photocatalytic water reduction, but few successful examples has been reported. Here, we report the synthesis of TiO2 (core)/Cu2O (ultrathin film shell) nanorods by a redox reaction between Cu2+ and in‐situ generated Ti3+ when Cu2+‐exchanged H‐titanate nanotubes are calcined in air. Owing to the strong TiO2‐Cu2O interfacial interaction, TiO2 (core)/Cu2O (ultrathin film shell) nanorods are highly active and stable in photocatalytic water reduction. The TiO2 core and Cu2O ultrathin film shell respectively act as the photosensitizer and cocatalyst, and both the photoexcited electrons in the conduction band and the holes in the valence band of TiO2 respectively transfer to the conduction band and valence band of the Cu2O ultrathin film shell. Our results unambiguously show that Cu2O itself can act as the highly active and stable cocatalyst for photocatalytic water reduction.  相似文献   

15.
The degradation efficiency of Th-doped TiO2 / TiO2 photocatalysts were investigated under UV and solar light illumination. The model compound chosen for the study was Oryzalin (OZ). Doping of inner transition metal ion Th was intended to modify the electronic properties of TiO2. The Th-doped TiO2 were synthesized by incorporating 0.02, 0.04, 0.06, and 0.1 atom percentage of Th into the TiO2 lattice by solid-state reaction. The stochiometry of the prepared samples is Ti1−xThxO2, where ‘x’ is the percentage of Th. The samples were characterized by UV-Visible absorption, UV-Visible -Diffused reflectance spectra, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and X-ray Diffraction (XRD). The pore size and surface area of these samples were studied by Brunauer, Emmett and Teller (BET) adsorption method. It was found that metal ion doping at various percentage compositions enables a large shift in the absorption band of the TiO2 towards visible light region. This is due to the formation of various mid band gaps at 2.84 eV, 2.804 eV, 2.66 eV, and 2.55 eV. The extent of degradation of the pesticide was followed by UV-Visible spectroscopy and GC-MS methods. Based on the spectral analysis, the probable degradation reaction mechanism for OZ is proposed. These results indicate that Th-doped TiO2 with the modified electronic properties is a good catalyst under solar light irradiation. But these particles show marginal variation in rates under UV-illumination. All the photodegradation reactions follow the first order kinetics.   相似文献   

16.
A periodic hybrid density functional theory computational strategy is presented to model the heterointerface between the methylammonium lead iodide (MAPI) perovskite and titanium dioxide (TiO2), as found in perovskite solar cells (PSC), where the 4-chlorobenzoic acid (CBA) ligand is used to improve the stability and the band alignment at the interface. The CBA ligand acts as a bifunctional linker to efficiently connect the perovskite and the oxide moieties, ensuring the stability of the interface through Ti–O and Pb–Cl interactions. The computed density of states reveals that the perovskite contributes to the top of the valence band while the oxide contributes to the bottom of the conduction band with a direct bandgap of 2.16 eV, indicating a possible electron transfer from MAPI to TiO2. Dipole moment analysis additionally reveals that the CBA ligand can induce a favorable effect to improve band alignment and thus electron transfer from MAPI to TiO2. This latter has been quantified by calculation of the spin density of the reduced MAPI/CBA/TiO2 system and indicates an almost quantitative (99.94%) electron transfer from MAPI to TiO2 for the surface engineered system, together with an ultrafast electron injection time in the femtosecond timescale. Overall, the proposed DFT-based computational protocol therefore indicates that surface engineering and the use of a bifunctional linker can lead to a better stability, together with improved band alignment and electron injection in PSC systems.  相似文献   

17.
To investigate the role of oxygen defects on the photocatalytic activity of TiO2, the TiO2 nanocrystals with/without oxygen defects are successfully synthesized by the hydrothermal and sol-gel methods, respectively. The as-prepared TiO2 nanocrystals with defects are light blue and the absorption edge of light is towards the visible light region (~420 nm). Raman and X-ray photoelectron spectroscopy (XPS) measurements all confirm that the concentration of oxygen vacancies in the TiO2 synthesized by the sol-gel method is less than that synthesized through the hydrothermal route. The introduction of oxygen defects contributes to a new state in the band gap that narrows the band gap, which is the reason for the extension of light absorption into the visible light region. The photocurrent results confirm that this band-gap narrowing enhances the photocurrent response under simulated solar light irradiation. The TiO2 with oxygen defects shows a higher photocatalytic activity for decomposition of a methylene blue solution compared with that of the perfect TiO2 sample. The photocatalytic mechanism is discussed based on the density functional theory calculations and photoluminescence spectroscopy measurements.  相似文献   

18.
By using the surface photovoltage(SPV) technique based on a lock-in amplifier,surface states located 3.1 eV below the conduction band of TiO 2 have been detected in TiO 2 nanotube arrays prepared by anodization of titanium foil in fluoride-based ethylene glycol solution.The photo-induced charge transportation behavior of TiO 2 nanotube arrays was also studied by qualitatively analyzing their SPV phase spectra measured under different external bias.When a negative bias was applied,carriers excited from surface states have the same transportation properties as those excited from the valence band;in contrast,when a positive bias was applied,these two kinds of photo-excited carriers exhibit different transportation behavior.  相似文献   

19.
Double perovskites (DPs) with a generic formula A2M′(I)MIIIX6 (A and M are metal ions, and X=Cl, Br, I) are now being explored as potential alternatives to Pb‐halide perovskites for solar cells and other optoelectronic applications. However, these DPs typically suffer from wide (≈3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered halide DP Cs4CuSb2Cl12 (CCSC) with bivalent CuII ion in the place of M′(I) was reported, which exhibit a band gap of approximately 1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal and chemical stability, and magnetic response of CuII d9 electrons controlling the optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides a stable and scalable product. CCSC is stable in water/acetone solvent mixtures (≈30 % water) and many other polar solvents unlike Pb‐halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4, and SbCl3 at 210 °C, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long‐range magnetic ordering is observed in CCSC even at room temperature. The role of such magnetic ordering in controlling the dispersion of the conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed.  相似文献   

20.
We show that the sub‐bandgap excitation of a directly coupled CdSe quantum dot (QD)–TiO2 system induces electron injection from CdSe levels to the conduction band of TiO2, leading to spectral extension of the light response. We anticipate that this study presents a useful guideline for improving the conversion efficiency of QD‐sensitized solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号