首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
安兴涛  穆惠英  咸立芬  刘建军 《中国物理 B》2012,21(7):77201-077201
Spin-dependent transport in a triple quantum dots superlattice system with a bridge coupling to two leads is studied. There exists an odd-even parity oscillation of spin polarization at the central dot level εc = 0 due to the spin-dependent Fano and Dicke effects induced by the quantum interference and the Rashba spin-orbit interaction. In the case of even numbers of triple quantum dots, the device can be used as a spin switch by tuning the energy difference h between the energies of the central and the lateral dots. These results may be helpful to design and fabricate practical spintronic devices.  相似文献   

2.
This paper reviews a microscopic model of basic electron-hole pair excitation processes in strongly confined semiconductor quantum dots (QD) and their influence on the optical QD properties. The effects of valence band mixing, Coulomb interaction, and surface polarization are taken into account. The exciton and biexciton wave functions and energies are obtained using a numerical diagonalization method. The computed optical spectra, such as absorption, gain, pump-probe, and two-photon absorption, agree well with experiments.  相似文献   

3.
利用时间分辨法拉第旋转光谱技术研究了室温下CdSe胶体量子点的自旋相干特性.获得了不同磁场下的自旋退相干时间,并分析了自旋退相干的物理机理.零磁场时量子点激子自旋退相干时间为102 ps,主要受电子与核自旋之间的超精细相互作用所影响.当外加横向磁场强度为250 mT时,激子自旋退相干时间为294 ps;增大磁场强度,自旋退相干时间逐渐减小.在较强磁场环境中(≥250mT),量子点激子自旋动力学由非均匀退相干机制所主导.  相似文献   

4.
蒋洪良  张荣军  周宏明  姚端正  熊贵光 《物理学报》2011,60(1):17204-017204
本文在处理InAs单电子量子点哈密顿模型时,将自旋-轨道(SO)相互作用作为微扰项,计算在Fock-Darwin本征函数下SO相互作用的矩阵元,利用其对能级和波函数的二阶修正,并且考虑新的能级对g因子和有效质量m*的影响,计算得到在声子协助下电子的自旋弛豫率Γ的表达式.给出了InAs量子点中声子协助的电子自旋弛豫率Γ对于限制势频率ω0、温度T、纵向高度z0关键词: 自旋弛豫率 自旋-轨道(SO)相互作用 InAs量子点 Fock-Darwin本征函数  相似文献   

5.
邹承役  吴绍全  赵国平 《物理学报》2013,62(1):17201-017201
使用双杂质安德森模型的哈密顿量,从理论上研究了串型耦合双量子点系统处于自旋阻塞区时的磁输运性质,并用主方程近似方法求解了哈密顿量.结果表明,自旋轨道耦合作用导致的双量子点间的自旋反转隧穿能够解除系统的自旋阻塞.同时也研究了超精细相互作用导致的在量子点内自旋反转和双量子点之间的自旋关联对系统的磁输运性质的影响,取得了一些有价值的结果,并对相关的物理问题进行了讨论.  相似文献   

6.
徐卫平  张玉颖  王强  聂一行 《中国物理 B》2016,25(11):117307-117307
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spinorbital interaction(RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green's function method in the linear response regime.Under the appropriate configuration of magnetic flux phase and RSOI phase,the spin figure of merit can be enhanced and is even larger than the charge figure of merit.In particular,the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs.For some specific configuration of the two phases,the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero,which is useful in realizing the thermal spin battery and inducing a pure spin current in the device.  相似文献   

7.
Self-assembled Cd(Mn)Se/Zn(Mn)Se quantum dots have been investigated by means of spatially and time-resolved magneto-optical spectroscopy. In such quasi zero-dimensional diluted magnetic semiconductors, the exchange interaction couples the spins of optically generated charge carriers with localized magnetic ion spins. We demonstrate that this can be used on the one hand to monitor nanoscale magnetization with a resolution of <100 μB by a purely optical technique and on the other hand to optically manipulate the magnetization in a semiconductor quantum dot.  相似文献   

8.
We study the spin ordering of a quantum dot defined via magnetic barriers in an interacting quantum spin Hall edge. The spin‐resolved density–density correlation functions are computed. We show that strong electron interactions induce a ground state with a highly correlated spin pattern. The crossover from the liquid‐type correlations at weak interactions to the ground state spin texture found at strong interactions parallels the formation of a one‐dimensional Wigner molecule in an ordinary strongly interacting quantum dot.

  相似文献   


9.
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green’s function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.  相似文献   

10.
We analyze the transport through asymmetric double quantum dots with an inhomogeneous Zeeman splitting in the presence of crossed dc and ac magnetic fields.A strong spin-polarized current can be obtained by changing the dc magnetic field.It is mainly due to the resonant tunnelling.But for the ferromagnetic right electrode,the electron spin resonance also plays an important role in transport.We show that the double quantum dots with three-level mixing under crossed dc and ac magnetic fields can act not only as a bipolar spin filter but also as a spin inverter under suitable conditions.  相似文献   

11.
Motivated by the far-infrared transmission experiments of Demel et al., we have investigated the magnetoplasmon excitations in an array of quantum dots within the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) approximation. Detailed calculations of the magnetic dispersion and power absorption from a uniform radiation field unambiguously demonstrates that the noncircular symmetry of the individual dots is responsible for the anticrossing behaviour observed in the experiments. The interdot Coulomb interaction is unimportant at the interdot separation of the samples studied.  相似文献   

12.
We study a spin structure that arises in a one‐dimensional quantum dot with zero total spin under the action of a charged tip of a scanning probe microscope in the presence of a weak magnetic field. The evolution of spin structure with changing the probe position is traced to show that the movable probe can be an effective tool to manipulate the spin. The spin structures are formed when the probe is located in certain regions along the dot due to Coulomb interaction of electrons as they are redistributed between the two sections in which the quantum dot is divided by the potential barrier created by the probe. There are two main states: spin‐polarized and non‐polarized ones. The transition between them is accompanied by a spin precession governed by the Rashba spin–orbit interaction induced by the electric field of the probe. In the transition region the spin density changes strongly while charge distribution remains nearly unchanged. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper investigates the spin-polarized transport properties of the T-shaped double quantum dots (DQD) coupled to two ferromagnetic leads. There are both Fano effect and Kondo effect in the system, and due to their mutual interaction, the density of states, the current, and the differential conductance of the system depend sensitively on the spin-polarized strength. Thus the obtained results show that this system is provided with excellent spin filtering property, which indicates that this system may be a candidate for spin valve transistors in the spintronics.  相似文献   

14.
15.
Dynamics of single InGaN quantum dots   总被引:1,自引:0,他引:1  
Decay dynamics for single InGaN quantum dots are presented using time-resolved photoluminescence. The recombination is shown to be characterized by a single exponential decay, in contrast to the non-exponential recombination dynamics seen in the 2D wetting layer. The lifetimes of single dots in the temperature range 4–60 K decrease with increasing temperature. Different dots show similar lifetimes of 2 ns.  相似文献   

16.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

17.
《中国物理 B》2021,30(9):97805-097805
A very long lifetime exciton emission with non-single exponential decay characteristics has been reported for single InA-s/GaAs quantum dot(QD) samples,in which there exists a long-lived metastable state in the wetting layer(WL)through radiative field coupling between the exciton emissions in the WL and the dipole field of metal islands.In this article we have proposed a new three-level model to simulate the exciton emission decay curve.In this model,assuming that the excitons in a metastable state will diffuse and be trapped by QDs,and then emit fluorescence in QDs,a stretchedlike exponential decay formula is derived as I(t)=At~(β-1)e~(-(rt)β),which can describe well the long lifetime decay curve with an analytical expression of average lifetime  相似文献   

18.
We report on the effect of the Debye averaging process on the CV characteristics of a sample containing four coupled planes of InAs self-assembled quantum dots. The observed electron distribution presented a dynamical dependence of the temperature during the CV measurements which was explained in terms of the screening length dependence on the temperature. In addition, using the CV data, we calculated the electron density at the planes containing the InAs dots and we have observed a high-temperature stability: the electron density at the quantum dots remained constant over a large range of temperature.  相似文献   

19.
We present time-resolved and time-integrated spectroscopy of single InAs quantum dots grown in a GaAs matrix. We observe a number of interesting features in the spectra, including the zero field splitting of exciton and biexciton lines due to quantum dot asymmetry. By the application of an in-plane magnetic field, the normally optically active and inactive exciton states become mixed, enabling us to optically probe the normally inaccessible ‘dark’ states. Time resolved measurements on the mixed states show decay times several times longer than the exciton lifetime at zero field, which we show to be consistent with a dark exciton lifetime orders of magnitude longer than that for bright exciton.  相似文献   

20.
边志浩  秦豪  詹翔  李剑  薛鹏 《中国物理 B》2016,25(2):20307-020307
We implement a quantum walk in phase space with a new mechanism based on the superconducting resonator-assisted double quantum dots.By analyzing the hybrid system,we obtain the necessary factors implementing a quantum walk in phase space:the walker,coin,coin flipping and conditional phase shift.The coin flipping is implemented by adding a driving field to the resonator.The interaction between the quantum dots and resonator is used to implement conditional phase shift.Furthermore,we show that with different driving fields the quantum walk in phase space exhibits a ballistic behavior over 25 steps and numerically analyze the factors influencing the spreading of the walker in phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号