首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A higher-order nonlocal strain-gradient model is presented for the damped vibration analysis of single-layer graphene sheets (SLGSs) in hygrothermal environment. Based on Kirchhoff plate theory in conjunction with a higher-order (bi-Helmholtz) nonlocal strain gradient theory, the equations of motion are obtained using Hamilton's principle. The higher-order nonlocal strain gradient theory has lower- and higher-order nonlocal parameters and a material characteristic parameter. The presented model can reasonably interpret the softening effects of the SLGS, and indicates a reasonably good match with the experimental flexural frequencies. Finally, the roles of viscous and structural damping coefficients, small-scale parameters, hygrothermal environment and elastic foundation on the vibrational responses of SLGSs are studied in detail.  相似文献   

2.
非局部弹性直杆振动特征及Eringen常数的一个上限   总被引:5,自引:0,他引:5  
郑长良 《力学学报》2005,37(6):796-798
应用非局部连续介质理论推导了弹性直杆的振动方程,并采用分离变量法 进行求解,得到了振动方程的本征方程、模态函数及通解. 结果表明:非局部连续介质弹性 直杆的自振频率因非局部效应而降低,降低的幅度不仅与材料内禀长度相关,还与振动频率 的阶次相关;而且频率大小存在极限值,显示了与晶格点阵相同特性. 通过与Brillouin格 波结果比较,给出了Eringen非局部理论中材料常数的一个上限.  相似文献   

3.
A nonlocal strain gradient theory(NSGT) accounts for not only the nongradient nonlocal elastic stress but also the nonlocality of higher-order strain gradients,which makes it benefit from both hardening and softening effects in small-scale structures.In this study, based on the NSGT, an analytical model for the vibration behavior of a piezoelectric sandwich nanobeam is developed with consideration of flexoelectricity. The sandwich nanobeam consists of two piezoelectric sheets and a non-piezoelec...  相似文献   

4.
In this paper, the free axial vibration of single walled carbon nanorod embedded in an elastic medium is investigated by the use of Rayleigh model. The stress gradient model introduced by Eringen is used to formulate the governing equations. Explicit expressions are derived for eigenfrequencies of fixed-fixed and fixed-free boundary conditions.  相似文献   

5.
This paper has successfully addressed three critical but overlooked issues in nonlocal elastic stress field theory for nanobeams: (i) why does the presence of increasing nonlocal effects induce reduced nanostructural stiffness in many, but not consistently for all, cases of study, i.e., increasing static deflection, decreasing natural frequency and decreasing buckling load, although physical intuition according to the nonlocal elasticity field theory first established by Eringen tells otherwise? (ii) the intriguing conclusion that nanoscale effects are missing in the solutions in many exemplary cases of study, e.g., bending deflection of a cantilever nanobeam with a point load at its tip; and (iii) the non-existence of additional higher-order boundary conditions for a higher-order governing differential equation. Applying the nonlocal elasticity field theory in nanomechanics and an exact variational principal approach, we derive the new equilibrium conditions, do- main governing differential equation and boundary conditions for bending of nanobeams. These equations and conditions involve essential higher-order differential terms which are opposite in sign with respect to the previously studies in the statics and dynamics of nonlocal nano-structures. The difference in higher-order terms results in reverse trends of nanoscale effects with respect to the conclusion of this paper. Effectively, this paper reports new equilibrium conditions, governing differential equation and boundary condi- tions and the true basic static responses for bending of nanobeams. It is also concluded that the widely accepted equilibrium conditions of nonlocal nanostructures are in fact not in equilibrium, but they can be made perfect should the nonlocal bending moment be replaced by an effective nonlocal bending moment. These conclusions are substantiated, in a general sense, by other approaches in nanostructural models such as strain gradient theory, modified couple stress models and experiments.  相似文献   

6.
Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is investigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT.  相似文献   

7.
Abstract

This article contains the nonlocal elasticity theory to capture size effects in functionally graded (FG) nano-rod under magnetic field supported by a torsional foundation. Torque effect of an axial magnetic field on an FG nano-rod has been defined using Maxwell’s relation. The material properties were assumed to vary according to the power law in radial direction. The Navier equation and boundary conditions of the size-dependent FG nano-rod were derived by the Hamilton’s principle. These equations were solved by employing the generalized differential quadrature method (GDQM). Presented model has the ability to turn into the classical model if the material length scale parameter is taken to be zero. The effects of some parameters, such as inhomogeneity constant, magnetic field and small-scale parameter, were studied. As an important result of this study can be stated that an FG nano-rod model based on the nonlocal elasticity theory behaves softer and has smaller natural frequency.  相似文献   

8.
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.  相似文献   

9.
The three-dimensional free vibration analysis of a multi-directional functionally graded piezoelectric(FGP) annular plate resting on two parameter(Pasternak)elastic foundations is investigated under different boundary conditions. The material properties are assumed to vary continuously along the radial and thickness directions and have exponent-law distribution. A semi-analytical approach named the state space based differential quadrature method(SSDQM) is used to provide an analytical solution along the thickness using the state space method(SSM) and an approximate solution along the radial direction using the one-dimensional differential quadrature method(DQM).The influence of the Winkler and shear stiffness of the foundation, the material property graded variations, and the circumferential wave number on the non-dimensional natural frequency of multi-directional FGP annular plates is studied.  相似文献   

10.
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.  相似文献   

11.
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material (FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.  相似文献   

12.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

13.
项松  石宏 《计算力学学报》2011,28(1):152-157
利用逆复合二次径向基函数无网格配点法对Reddy的高阶剪切变形理论进行离散,预测了对称复合材料层合板的自由振动特性.将不同材料参数、几何尺寸和边界条件的层合板固有频率计算结果与相关文献中的结果进行对比,结果表明:逆复合二次径向基函数在对称复合材料层合板自由振动分析方面具有收敛性好及精度高等一系列优点.  相似文献   

14.
This paper presents a nonlinear thickness-shear vibration model for onedimensional infinite piezoelectric plate with flexoelectricity and geometric nonlinearity. The constitutive equations with flexoelectricity and governing equations are derived from the Gibbs energy density function and variational principle. The displacement adopted here is assumed to be antisymmetric through the thickness due to the thickness-shear vibration mode. Only the shear strain gradient through the thickness is considered in the present model. With geometric nonlinearity, the governing equations are converted into differential equations as the function of time by the Galerkin method. The method of multiple scales is employed to obtain the solution to the nonlinear governing equation with first order approximation. Numerical results show that the nonlinear thickness-shear vibration of piezoelectric plate is size dependent, and the flexoelectric effect has significant influence on the nonlinear thickness-shear vibration frequencies of micro-size thin plates. The geometric nonlinearity also affects the thickness-shear vibration frequencies greatly. The results show that flexoelectricity and geometric nonlinearity cannot be ignored in design of accurate high-frequency piezoelectric devices.  相似文献   

15.
基于新修正偶应力理论,在对微细观尺度的复合材料层合梁/板进行力学响应计算时,往往采用一系列假设来简化模型。现有文献都全部或部分应用了这些假设,但对这些假设是否会对计算结果造成影响尚未进行充分讨论分析。本文建立了未经简化的新修正偶应力Reddy层合板模型,并对其自由振动进行了分析。通过数值算例的对比,讨论了常用的几个简化假设对微细观复合材料四边简支方板自振频率的影响以及适用范围。算例结果表明,常用的几个简化假设对于微尺度层合薄板自由振动的影响很小,对于厚板的低阶频率影响也很小,但对厚板的高阶频率影响显著。  相似文献   

16.
Natural frequencies are important dynamic characteristics of a structure. Therefore, the exact solution pertaining to free vibration of stepped circular plate elastically restrained against rotation, translation, and internal elastic ring support resting on an arbitrary variable elastic foundation using Green Function is presented in this paper. Thus, an accurate and direct modeling technique is introduced for modeling stepped circular plate on an arbitrary variable elastic foundation with arbitrary boundary conditions and internal elastic ring support. The effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and other parameters are assessed. Finally, some numerical examples are shown in order to present the efficiency and simplicity of the Green Function in the new formulation.  相似文献   

17.
为研究高速列车简支梁振动的问题,利用移动荷载列解析表达式的极限条件,推导了共振与消振速度。从自由振动幅值的角度,证明了桥梁振动主要由一阶模态贡献,且随着车速的增加,二阶模态对自由振动的贡献逐渐增大,而更高阶的模态贡献量可忽略不计。提高桥梁阻尼能起到抑振的作用,但会加剧车辆驶离桥后的自由振动。以20 m和32 m的两座简支梁桥为算例,从自由振动的幅值和相位出发,阐明了在特定的速度下,发生共振与消振的主要原因是轴载激励的自由振动之间出现叠加、抵消或抑制的现象。当共振速度与消振速度重合时,消振先于共振发生。比较移动轴载解析值与车-轨-桥耦合有限元模型的计算值,结果表明,移动轴载模型能有效预测桥梁的位移时程,但分析桥梁的加速度响应时,有必要考虑车-轨-桥之间的动力耦合效应。  相似文献   

18.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

19.
吴昊骏  龚敏 《爆炸与冲击》2019,39(2):148-158
计算多段微差起爆合成振速对城市隧道低振速爆破设计具有非常重要的意义,因普通雷管实际每段都有延时误差,这些误差对低振速指标下微差合成振动影响不能忽略,但各段延时范围将形成海量的多孔微差合成振动曲线导致难以计算。为解决这一问题,将现场单孔爆破曲线作为震源波形,利用傅里叶级数拟合曲线,根据实测各段雷管延时范围特点,采用多级循环嵌套的逻辑语言编写MATLAB计算程序,成功获取8段微差爆破全部可能的合成振动曲线;分析了同段延时误差、不同段之间延时误差对爆破合成振动的影响;以计算合成振动曲线和实测爆破振动曲线对比判定第二临空面形成时间;计算其形成前各段延时范围内所有可能振动曲线后,选择峰值振速不超标的最大药量为设计掏槽药量。在某隧道工程应用表明:第二临空面出现在60ms,在1.0kg设计药量下最大计算合成振速0.62cm/s,与现场实测值吻合较好。  相似文献   

20.
IntroductionCouplingbetwenbending_extensioncausedbylaminatematerialand/orgeometricalasymmetryaboutlaminatemiddlesurfaceisknow...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号