首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on nonlinear wave mixing, we experimentally propose a scheme for directly generating optical orbital angular momentum(OAM) by a spirally structured fundamental wave interacting with a nonlinear medium, in which the nonlinear susceptibilities are homogenous. In the experiment, the second-harmonic generation of a fundamental wave carrying positive(negative) integers and fractional OAM states was investigated. This study presents a convenient approach for dynamic control of OAM of vortex beams, which may feature their applications in optical manipulation and optical communication.  相似文献   

2.
梁彬  袁樱  程建春 《物理学报》2015,64(9):94305-094305
电子二极管的发明标志着现代电子学的诞生, 在整个人类社会中引起了科技的深刻变革. 声波是一种具有非常悠久的研究历史的经典波, 却始终被认为仅具有对称的传播形式. 若能制造出可像电子二极管控制电流般实现声波单向导通的声学器件, 显然将对整个声学研究领域产生重大影响, 具有重要的科学意义及应用价值. 第一个基于非线性媒质与声子晶体的声二极管利用非线性突破声学互易原理的局限, 首次实现了将声能流限制在单一方向上的声整流效应. 针对非线性系统转换效率低下的固有缺陷, 在线性体系内围绕声单向传播这个重要科学问题开展了一系列理论和实验研究, 设计与制备了多种具有特殊结构和性能的线性声学单向结构, 在器件的效率、带宽及尺寸方面产生了突破. 在声二极管研究的基础上, 第一个可以像电子三极管操控电流般对声流进行操控与放大的声三极管理论模型也被提出. 本文介绍了声单向传播这一新兴且富有蓬勃生机的研究领域中的主要进展.  相似文献   

3.
Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.  相似文献   

4.
Qiang Tang 《中国物理 B》2022,31(4):44301-044301
Rotational manipulation of massive particles and biological samples is essential for the development of miniaturized lab-on-a-chip platforms in the fields of chemical, medical, and biological applications. In this paper, a device concept of a two-dimensional acoustofluidic chamber actuated by multiple nonlinear vibration sources is proposed. The functional chamber enables the generation of acoustic streaming vortices for potential applications that include strong mixing of multi-phase flows and rotational manipulation of micro-/nano-scale objects without any rotating component. Using numerical simulations, we find that diversified acoustofluidic fields can be generated in the chamber under various actuations, and massive polystyrene beads inside can experience different acoustophoretic motions under the combined effect of an acoustic radiation force and acoustic streaming. Moreover, we investigate and clarify the effects of structural design on modulation of the acoustofluidic fields in the chamber. We believe the presented study could not only provide a promising potential tool for rotational acoustofluidic manipulation, but could also bring this community some useful design insights into the achievement of desired acoustofluidic fields for assorted microfluidic applications.  相似文献   

5.
声波作为信息和能量的载体,一直以来在水下通信中被广泛采用,但尚未解决带宽窄、速率低的问题。在光学领域和电磁波领域,轨道角动量都表征了螺旋相位结构的自然属性;通过引入轨道角动量到声学领域中,水声通信系统的传输能力以及频谱效率都得到扩展。基于换能器圆阵列产生涡旋声波进行分析和检测,研究涡旋声波波束的阵列产生方法,给出涡旋声波波束在水下传播的特性。在主轴方向,采用均匀圆阵列产生不同拓扑模式的涡旋声波波束,确定轨道角动量拓扑模式与换能器阵列之间的对应关系;为生成不同拓扑模式下的涡旋声波,研究阵列单元数目、阵列半径、传输频率等对涡旋声波的影响。通过研究发现模式数越高,涡旋声波主瓣波束角越大,主瓣峰值越小。阵列半径越大,主瓣波束角越大,而主瓣峰值则随着阵列半径的增大而减小;频率越高,主瓣波束角越小,主瓣峰值变化不大;阵列单元数对主瓣波束角无影响,但与主瓣峰值成正比关系,阵列单元数越多,主瓣峰值越大。  相似文献   

6.
Emission of underwater acoustic orbital angular momentum(OAM) is studied as well as underwater acoustic communications with OAM multiplexing. Theoretical acoustic properties for circular phased array are analyzed based on point source theory. We optimize and design an array prototype based on cymbal transducer. The diameter of array prototype is 180 mm, the number of array elements is 10, and the working frequency is 25 k Hz. It emits acoustic OAM with topological charges-3 to 3. The favorable results provide the theoretical basis for emitting acoustic OAM with different topological charges. We encode on-off states of acoustic OAM with different topological charges according to ASCII code to realize underwater acoustic communications. The transmission results suggest that acoustic OAM with various topological charges have intrinsically orthogonal properties. This research will offer potential applications in underwater acoustic communications.  相似文献   

7.
Qin Chang 《中国物理 B》2022,31(4):44302-044302
Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field. Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks, as it approximates realistic applications. Nevertheless, it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate. In this study, we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner. The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary. The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries. This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries, which may provide a new idea on analyzing the acoustic particle manipulation in confined space.  相似文献   

8.
涡旋声束具有螺旋的相位波前,中轴线上形成声强为零的相位奇点,其所携带的轨道角动量在粒子操控领域有着广阔的应用前景。传统声涡旋只在传播轴线上形成一个拓扑荷可控的涡旋波束,这限制了声涡旋的应用灵活性。基于环形点声源阵列和相位编码技术,利用奇偶声源分别产生共轴双涡旋声束的声场叠加,在传播截面上形成了具有中心涡旋和子涡旋的离轴多涡旋声场;研究了双涡旋拓扑参数对离轴涡旋的个数、位置及拓扑荷的影响,基于声涡旋的径向声压和相位分布,确定了离轴涡旋的离轴半径,并结合声源位置推导子涡旋中心方位角的计算公式,实现离轴涡旋的精确定位。本研究突破了沿轴分布的涡旋声场只能形成单点涡旋势阱的操控局限,为利用离轴多涡旋实现多点粒子捕获提供了理论依据,促进涡旋声场在精确粒子操控和传输方面的高效应用。   相似文献   

9.
利用部分波展开法求解得到了Gauss声束入射下刚性和非刚性椭圆柱的声散射系数,推导了一般情况下的声辐射力矩表达式.在此基础上,通过一系列数值仿真详细分析了离轴距离、入射角度和束腰半径对声辐射力矩的影响.结果表明:正向与负向声辐射力矩均可以在一定条件下存在;低频情况下刚性椭圆柱比非刚性椭圆柱更容易产生较强的声辐射力矩;特定频率的入射声场可以激发出非刚性椭圆柱不同阶的共振散射模式,因而非刚性椭圆柱的声辐射力矩峰值与频率的关系更密切;增加束腰半径有利于扩大散射截面,进而增加椭圆柱的声辐射力矩.该研究结果预期可以为利用声辐射力矩实现粒子的可控旋转和流体黏度的反演提供一定的理论指导.  相似文献   

10.
An underwater acoustic metasurface with sub-wavelength thickness is designed for acoustic wavefront manipulation.In this paper, a pentamode lattice and a frequency-independent generalized acoustic Snell's law are introduced to overcome the limitations of narrow bandwidth and low transmittance. The bulk modulus and effective density of each unit cell can be tuned simultaneously, which are modulated to guarantee the achievement of refractive index profile and high transmission. Here, we actualize anomalous refraction, generation of non-diffracting Bessel beam, sub-wavelength flat focusing,and surface wave conversion by constructing inhomogeneous acoustic metasurface. This design approach has potential applications in medical ultrasound imaging and underwater acoustic communications.  相似文献   

11.
Gepu Guo 《中国物理 B》2022,31(12):124302-124302
Given the enhanced channel capacity of wave chirality, acoustic communications based on the orbital angular momentum (OAM) of acoustic-vortex (AV) beams are of significant interest for underwater data transmissions. However, the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding. To avoid the required multiple measurements of the traditional orthogonality based algorithm, the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays. Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays. To achieve an ideal arrangement, two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum (SD-OAM). By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers, accurate beam alignments are accomplished by multiple adjustments in three dimensions. The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams. The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays, and suggest more application potentials for acoustic communications.  相似文献   

12.
In this study, we investigate the acoustic topological insulator or topological metastructure, where an acoustic wave can exist only in an edge or interface state instead of propagating in bulk. Breaking the structural symmetry enables the opening of the Dirac cone in the band structure and the generation of a new band gap, wherein a topological edge or interface state emerges.Further, we systematically analyze two types of topological states that stem from the acoustic valley Hall effect mechanism;one type is confined to the boundary, whereas the other type can be observed at the interface between two topologically different structures. Results denote that the selection of different boundaries along with appropriately designed interfaces provides the acoustic waves in the band gap range with abilities of one-way propagation, dual-channel propagation, immunity from backscattering at sharp corners, and/or transition between propagation at interfaces and boundaries. Furthermore, we show that the acoustic wave propagation paths can be tailored in diverse and arbitrary ways by combing the two aforementioned types of topological states.  相似文献   

13.
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.  相似文献   

14.
Multiferroic materials with coexisting ferroelectric and magnetic orders have attracted tremendous research interests because of their intriguing fundamental physics as well as potential applications in the next-generation multifunctional devices. Hexaferrites with conical magnetic structures are among the most promising single-phase multiferroics because strong magnetoelectric effects can be achieved in them from low temperatures up to room temperature in low magnetic fields. In this review, after briefly introducing the background on multiferroics and classification of hexaferrites, we summarize recent progress in multiferroic hexaferrites, including the mechanisms of spin-induced ferroelectricity, the magnetoelectric phase diagram, giant direct and converse magnetoelectric effects. Furthermore, we present a new mechanism of magnetic-ion-induced displacive polarization in hexaferrites, which leads to quantum paraelectricity and quantum electric-dipole liquid in M-type hexaferrites.  相似文献   

15.
Developing microrobots for precisely manipulating micro/nanoscale objects has triggered tremendous research interest for various applications in biology, chemistry, physics, and engineering. Here, a novel hypersonic‐induced hydrodynamic tweezers (HSHTs), which use gigahertz nano‐electromechanical resonator to create localized 3D vortex streaming array for the capture and manipulation of micro‐ and nanoparticles in three orientations: transportation in a plane and self‐rotation in place, are presented. 3D vortex streaming can effectively pick up particles from the flow, whereas the high‐speed rotating vortices are used to drive self‐rotation simultaneously. By tuning flow rate, the captured particles can be delivered, queued, and selectively sorted through the 3D HSHTs. Through numerical simulations and theoretical analysis, the generation of the 3D vortex and the mechanism of the particles manipulation by ultrahigh frequency acoustic wave are demonstrated. Benefitting from the advantages of the acoustic and hydrodynamic method, the developed HSHTs work in a precise, noninvasive, label‐free, and contact‐free manner, enabling wide applications in micro/nanoscale manipulations and biomedical research.  相似文献   

16.
Majorana fermions(MFs) are exotic particles that are their own anti-particles. Currently, the search for MFs occurring as quasiparticle excitations in condensed matter systems has attracted widespread interest, because of their importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Motivated by recent experimental progress towards the detection and manipulation of MFs in hybrid semiconductor/superconductor heterostructures, in this review, we present a novel proposal to probe MFs in all-optical domain. We introduce a single quantum dot(QD), a hybrid quantum dot-nanomechanical resonators(QD-NR) system, and a carbon nanotube(CNT) resonator implanted in a single electron spin system with optical pump-probe technology to detect MFs, respectively. With this scheme, a possible Majorana signature is investigated via the probe absorption spectrum and nonlinear optical Kerr effect, and the coupling strength between MFs and the QD or the single electron spin is also determined. In the hybrid QD-NR system, vibration of the NR will enhance the nonlinear optical effect, which makes the MFs more sensitive for detection. In the CNT resonator with a single electron, the single electron spin can be considered as a sensitive probe, and the CNT resonator behaved as a phonon cavity is robust for detecting of MFs. This optical scheme will provide another method for the detection MFs and will open the door for new applications ranging from robust manipulation of MFs to quantum information processing based on MFs.  相似文献   

17.
臧雨宸  高金彪 《计算物理》2020,37(6):700-708
在理论和数值上研究柱面波对多层球的声辐射力.基于声波的散射理论,得到声辐射力的解析解,并给出数值仿真.结果表明:在特定的kakr0处,柱面行波的辐射力可以是负值(k是波数,a是多层球的半径,r0是多层球到声源的距离).随着kr0增加到无穷大,仿真结果退化为平面波的情形.对双层球而言,每层的相对厚度影响曲线共振峰的大小和位置,但对三层球而言没有显著影响.当最内层的介质换成空气时,由于声阻抗差异较大,共振峰更加明显.该研究可以为研发新一代单行波声束声学镊子提供理论指导,该技术在生物医学超声和材料科学领域有广泛的应用.  相似文献   

18.
Complex oxide heterostructure interfaces have shown novel physical phenomena which do not exist in bulk materials. These heterostructures can be used in the potential applications in the next generation devices and served as the playgrounds for the fundamental physics research. The direct measurements of the interfaces with excellent spatial resolution and physical property information is rather difficult to achieve with the existing tools. Recently developed cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) for complex oxide interfaces have proven to be capable of providing local electronic density of states (LDOS) information at the interface with spatial resolution down to nanometer scale. In this perspective, we will briefly introduce the basic idea and some recent achievements in using XSTM/S to study complex oxide interfaces. We will also discuss the future of this technique and the field of the interfacial physics.  相似文献   

19.
We review the foundations of Einstein’s general theory of relativity, discuss recent progress in the tests of relativistic gravity, and present motivations for new generation of high-accuracy gravitational experiments. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential of the recently proposed gravitational experiments.  相似文献   

20.
陈理想  张远颖 《物理学报》2015,64(16):164210-164210
光子既是经典信息也是量子信息的理想载体. 单个光子不仅可以携带自旋角动量(与光波的圆偏振相关), 还可以携带轨道角动量(与光波的螺旋相位相关). 而轨道角动量的重要意义在于可利用单个光子的量子态构建一个高维的Hilbert空间, 从而实现高维量子信息的编码. 自Allen等于1992年确认光子轨道角动量的物理存在以来, 轨道角动量在经典光学和量子光学领域展现了诸多诱人的应用前景, 目前已成为国际光学领域的研究热点之一. 本综述将着重介绍高阶轨道角动量光束的制备与调控技术, 特别是高阶轨道角动量的量子纠缠态操控、旋转Doppler 效应测量及其在远程传感和精密测量技术中的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号