首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present density functional calculations on 1–6 monolayer (ML) thick TiO2 films peeled off from the main low-index surfaces of anatase. The structure of the films is optimized both by constraining the lattice constants to those of bulk anatase, and by allowing them to relax. It is found that the stability order of the films does not follow that of the surfaces from which they are derived, and does not increase monotonously with film thickness. Furthermore, relaxing the lattice constants can induce large modifications in the film structure. In particular, two anomalously stable films are found. One derives from the 2 ML (001) film, and rearranges to a lepidocrocite-TiO2 nanosheet. The other one derives from a 4 ML (101) film, and gives rise to a novel phase, where all the Ti ions are fivefold coordinated.  相似文献   

2.
The photochromic and acidochromic shifts undergone by recently synthesized diarylethene photochromes have been simulated using a Time‐Dependent Density Functional Theory approach relying on a range‐separated functional, namely CAM‐B3LYP. The selected approach is generally accurate for reproducing the variations of the spectral features, though acidochromic shifts are clearly more challenging than their photochromic counterparts. More importantly, an analyzis of the shapes of the relevant molecular orbitals grants insights into the electro‐cyclization of several diarylethenes, therefore partly allowing to understand the presence of experimental deadlocks. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

3.
The phosphorescence spectrum of p-dichlorobenzene has been calculated using multiconfiguration self-consistent-field wave functions and the quadratic response technique. Attention has been paid to the intensity distribution of the singlet–triplet (3B1u1Ag) transition through a number of vibronic subbands. The second order spin–orbit coupling (SOC) contribution to the spin splitting of the 3B1u (3*) state is found to be almost negligible, and the calculations therefore provide a good estimate for the zero-field splitting (ZFS) parameters based only on the electron spin–spin coupling expectation values. Nuclear quadrupole resonance constants for the different Cl isotopes are also calculated to accomplish the ZFS assignment. The electric dipole activity of the spin sublevels in the triplet–singlet transitions to the ground-state vibrational levels is estimated by calculations of derivatives using distorted geometries which are shifted from the equilibrium position along different vibrational modes. A vibrational analysis of the phosphorescence spectrum, based on the SOC-induced mixing of the singlet and triplet states calculated along different vibrational modes, provides reasonable agreement with experimental data.Acknowledgment O. R.-P. would like to thank the European MOLPROP network for support. The authors thank Alexander Baev for fruitful discussions. This work was supported by the Swedish Royal Academy of Science (KVA).  相似文献   

4.
In this paper, we have calculated using the ab initio method the IR vibrational spectra of complexes of CO2 formed with water (sp3 O-donating atom). Binding energies and structures of the CO2-H2O and water-(CO2)2 complexes have been determined at the second-order level of the Moller-Plesset perturbation theory (MP2) using Dunning's basis sets. The results are presented and critically discussed in terms of the nature of the water-CO2 interactions, electron donor acceptor (EDA) and weak O...H-O interactions. For water-(CO2)2 trimer, it is also shown that the contribution to the interaction energy of the irreducible three-bodies remains relatively negligible. We have analyzed the frequency shifts and the IR and Raman intensity variations under the complex formation. We have particularly emphasized the splitting of the 2 bending mode of CO2 and stretching modes of water, which have been revealed as the most pertinent probes to assess the nature of the forces involved in the different complexes. Finally, because water can play the role of Lewis base and acid as well, we found that weak O...H-O interactions can cooperate with EDA interactions in trimer, leading to very specific spectral signatures that are further discussed.  相似文献   

5.
Extensive ab initio modeling has been performed to explain quantitatively the apparent shapes of characteristic bands, which are systematically observed in the fingerprint region of infrared (IR) reflection-absorption (RA) spectra of oligo(ethylene glycol) (OEG)-terminated SAMs. The presence of defects was thoroughly examined by modeling the RA spectra using the DFT method BP86/6-31G* for all-helical and all-trans conformers of HS(CH2CH2O)nR (n = 5, 6, R = H, CH3) and HS(CH2)15CONH(CH2CH2O)6H molecules and for several defect-containing conformers. These data were then used to simulate RA spectra of SAMs with different content of defects and to compare them with experiments. It is shown that for SAMs of HS(CH2CH2O)nCH3 (n = 5, 6) the pronounced asymmetry of the dominating band can be attributed to the multimode nature of COC stretching vibrations of helical conformers combined with the contribution from few percent of all-trans conformers. Arguments are presented which disprove appreciable amounts of helical conformers with single trans and/or gauche defects. Much more complex combination of factors, which can come into play in the formation of the high-frequency shoulder of COC band, is exemplified by self-assemblies of OEG-terminated amide-bridged alkanethiolates. In particular, spectral signatures of defects with inverted OH terminus are compared with other contributions to the apparent shape of COC band formation. For this family of SAMs, the presence of about 10% of all-trans conformers gives a satisfactory quantitative agreement between the calculated RA spectra and experimental observations.  相似文献   

6.
Coupled-cluster and density-functional methods have been used to determine specific rotations and electronic circular dichroism (ECD) rotational strengths for (S)-2-chloropropionitrile. Coupled-cluster specific rotations using both the length- and velocity-gauge representations of the electric-dipole operator, computed with basis sets of triple-zeta quality containing up to 326 functions, compare very well with recently reported gas-phase cavity-ring-down polarimetry data. ECD rotational strengths for the six lowest-lying excited states are found to vary in sign, and the second excited state, which has a larger rotational strength than the first by a factor of 4, was found to yield a much larger contribution (by a factor of 10) to the overall negative specific rotation observed both experimentally and theoretically. However, both valence and Rydberg states appear to make substantial contributions to the total rotation, often of opposite sign from the converged/linear-response result. Furthermore, the sum-over-states approach was found to be inadequate for reproducing the specific rotations derived from the linear-response approach, even when 100 excited states (well beyond the estimated ionization limit) were included in the summation. Density-functional specific rotations using the B3LYP functional with basis sets of quadruple-zeta quality containing up to 588 functions are found to be too large compared to experiment by approximately a factor of 2. This error appears to be related to both the underestimation of the electronic excitation energies, as well as concomitant overestimation of the corresponding ECD rotational strengths. Although earlier studies reported good agreement between density-functional specific rotations and experiment when electric-field-dependent functions were used in conjunction with a double-zeta-quality basis set, the results reported here, which are near the basis-set limit, suggest that this agreement may be fortuitous.  相似文献   

7.
MO STO-3G ab initio calculations have been carried out for the antiparallel dipole and the head-to-tail dipole model of acetonitrile dimers. The optimized interaction enthalpy is about half of the lowest experimental estimate. The calculated interaction distance for the antiparallel dipole model is very close to the sum of intermolecular radii of N and C; the distance for the head-to-tail model is about 20% higher than the sum of N and H intermolecular radii. The discussion of the interaction in terms of the supermolecule MO's suggests for both models a bonding of mainly electrostatic character. The shortcomings of the STO-3G basis set in dealing with this problem are compared with those reported in the literature. The influence of the basis set on the calculated electron distribution in acetonitrile monomer was examined as a preliminary part of the present study, and is also reported in the paper.  相似文献   

8.
9.
Theoretical near edge X-ray absorption fine structure (NEXAFS) spectra describing oxygen 1s core excitation have been evaluated for the differently coordinated oxygen species appearing near the V2O3(0001) surface with half metal layer VOV termination. Adsorption of oxygen above vanadium centers of the VOV terminated surface (OtVO termination) results in very strongly bound vanadyl oxygen, which has also been considered for core excitation in this study. The angle-resolved spectra are based on electronic structure calculations using ab initio density functional theory (DFT) together with model clusters. Experimental NEXAFS spectra for V2O3(0001) show a rather strong dependence of peak positions and relative intensities on the photon polarization direction. This dependence is well described by the present theoretical spectra and allows us to assign spectral details in the experiment to specific O 1s core excitations where final state orbitals are determined by the local binding environments of the differently coordinated oxygen centers. As a result, a combination of the present theoretical spectra with experimental NEXAFS data enables an identification of differently coordinated surface oxygen species at the V2O3(0001) surface.  相似文献   

10.
With the aim of investigating the influence of direct intermolecular interactions between nitrile groups on the infrared features of nitrile polymers, vibrational frequencies and infrared intensities of acetonitrile and of its antiparallel dimer are compared. It is found that whereas frequencies are unchanged upon association infrared intensities are dramatically affected. In particular, the striking difference between the intensities of the CN stretching band measured in gas phase, on the one hand, and in the liquid, on the other, is already accounted for at the dimer level. Despite the poor reliability of absolute values of calculated intensities, it is interesting to note that consistent trends are obtained at various levels of theory. These results suggest that ab initio calculations of infrared intensities can be useful to interpret infrared measurements, thus contributing to the elucidation of molecular structure of materials. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
We report ab initio calculations for the electronic and structural properties of V(n), V(n) (-), and V(n) (+) clusters up to n=8. We performed the calculations using a real-space pseudopotential method based on the local spin density approximation for exchange and correlation. This method assumes no explicit basis. Wave functions are evaluated on a uniform grid; only one parameter, the grid spacing, is used to control convergence of the electronic properties. Charged states are easily handled in real space, in contrast to methods based on supercells where Coulombic divergences require special handling. For each size and charge state, we find the lowest energy structure. Our results for the photoelectron spectra, using the optimized structure, agree well with those obtained by experiment. We also obtain satisfactory agreement with the measured ionization potential and electron affinity, and compare our results to calculations using an explicit basis.  相似文献   

12.
Three-dimensional quantum mechanical calculations on the vibrational predissociation dynamics of HeI2 B state complex are performed using a potential energy surface accurately fitted to unrestricted open-shell coupled cluster ab initio data, further enabling extrapolation for large I2 bond lengths. A Lanczos iterative method with an optimized complex absorbing potential is used to determine energies and lifetimes of the vibrationally predissociating He,I2(B,v') complex for v'相似文献   

13.
Configuration interaction (CI) studies of the ground and electronically excited states are reported for nitric oxide dimer (N2O2) in itscis equilibrium geometry. The lowest triplet state (3 B 2) is found to lie only 0.43 eV above the ground state (1 A 1). The1 A 1 1 B 1 transition is shown to be responsible for the rising absorption in the near infrared region observed experimentally. The transition of1 A 11 A 2 calculated in the visible spectrum range of 701 nm (1.77 eV) is symmetry forbidden.  相似文献   

14.
Rovibronic energy levels and properties of the Br(2P)-HCN complex were obtained from three-dimensional calculations, with HCN kept linear and the CN bond frozen. All diabatic states that correlate to the 2P3/2 and 2P1/2 states of the Br atom were included and spin-orbit coupling was taken into account. The 3 x 3 matrix of diabatic potential surfaces was taken from the preceding paper (paper 1). In agreement with experiment, we found two linear isomers, Br-NCH and Br-HCN. The calculated binding energies are very similar: D0 = 352.4 cm(-1) and D0 = 349.1 cm(-1), respectively. We established, also in agreement with experiment, that the ground electronic state of Br-NCH has |Omega| = (1/2) and that Br-HCN has a ground state with |Omega| = (3/2), where the quantum number, Omega, is the projection of the total angular momentum, J, of the complex on the intermolecular axis R. This picture can be understood as being caused by the electrostatic interaction between the quadrupole of the Br(2P) atom and the dipole of HCN, combined with the very strong spin-orbit coupling in Br. We predicted the frequencies of the van der Waals modes of both isomers and found a direct Renner-Teller splitting of the bend mode in Br-HCN and a smaller, indirect, splitting in Br-NCH. The red shift of the CH stretch frequency in the complex, relative to free HCN, was calculated to be 1.98 cm(-1) for Br-NCH and 23.11 cm(-1) for Br-HCN, in good agreement with the values measured in helium nanodroplets. Finally, with the use of the same potential surfaces, we modeled the Cl(2P)-HCN complex and found that the experimentally observed linear Cl-NCH isomer is considerably more stable than the (not observed) Cl-HCN isomer. This was explained mainly as an effect of the substantially smaller spin-orbit coupling in Cl, relative to Br.  相似文献   

15.
An equation been derived to calculate, ab initio, the frequencies and intensities of a resonant Raman spectrum from the transform theory of resonance Raman scattering. This equation has been used to calculate the intensities of the ultraviolet resonance Raman spectra from the first π-π* excited state of uracil and 1,3-dideuterouracil. The protocol for this calculation is as follows: (1) The force constant matrix elements in Cartesian coordinate space, the vibrational frequencies, and the minimum energy ground and excited state geometries of the molecule are calculated ab initio using the molecular orbital program Gaussian 92, (2) the force constants in Cartesian coordinates are transformed into force constants in the space of a set of 3N – 6 nonredundant symmetrized internal coordinates, (3) the G matrix is constructed from the energy minimized ground state Cartesian coordinates and the GFL = LΛ eigenvalue equation is solved in internal coordinate space, (4) the elements of the L and L?1 matrices are calculated, (5) the changes in all of the internal coordinates in going from the ground to the excited state are calculated, and (6) these results are used in combination with the transform theory of resonance Raman scattering to calculate the relative intensities of each of the 3N – 6 vibrations as a function of the exciting laser frequency. There are no adjustable parameters in this calculation, which reproduces the experimental frequencies and intensities with remarkable fidelity. This indicates that the Dushinsky rotation of the modes in the excited state of these molecules is not important and that the simplest form of the transform theory is adequate. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Quantum-chemical calculations of neutral and charged ironporphyrin (FeP, FeP+1 and FeP) systems were performed using B3LYP and MP2 methods. It was shown that all ground states of FeP (S = 1), FeP+1 (S = 3/2) and FeP (S = 1/2) systems have C2v symmetry. During the first step of electron transfer process an electron goes to β-LUMO − 1 Fe dyz-orbital of FeP+1. The second electron goes to β-LUMO of FeP which is attributed to π-system of porphyrin ring. The 3s- and 3p-orbitals do not play a significant role in the electron transfer process. The ability of FeP−1 system to form π-dative chemical bond is low. The formation of π–π-complexes is preferable.  相似文献   

17.
The cis-platin binding to the d(CCTGGTCC)*d(GGACCAGG) model DNA octamer was monitored with infrared absorption (IR) and vibrational circular dichroism (VCD) spectroscopies. The spectra were modeled with the aid of density functional computations and a Cartesian coordinate-based transfer of molecular property tensors from smaller DNA fragments. Because of the fragmentation, the tensors could be calculated with a higher precision. Environmental effects, such as the presence of the solvent or the cis-platin ligand, could be included in the modeling. The solvent was modeled by an explicit inclusion of hydrogen-bound water molecules, positions of which were estimated from a molecular dynamics simulation, or by the polarized continuum COSMO model. The B3LYP and BPW91 functionals used for the calculations of the spectral parameters were combined with the relativistic LANL2DZ platinum pseudo-potentials. The simulations reproduced the main IR and VCD DNA spectral features and explained most of the changes observed experimentally upon metal binding. The results confirmed that the influence of the ligand on DNA vibrational properties is quite complex; it originates in the geometry deformation and normal mode coupling pattern changes of the platinated octamer, as well as in local perturbations of the electronic structure and force field of the GC base pairs to which the platinum is bound. Many of the local effects could be accounted for by a point charge used in place of the metal in the GC complex.  相似文献   

18.
The ground state (S0) geometry of the firefly luciferin (LH2) was optimized by both DFT B3LYP and CASSCF methods. The vertical excitation energies (Tv) of three low-lying states (S1, S2, and S3) were calculated by TD-DFT B3LYP//CASSCF method. The S1 geometry was optimized by CASSCF method. Its Tv and the transition energy (Te) were calculated by MS-CASPT2//CASSCF method. Both the TD-DFT and MS-CASPT2 calculated S1 state Tv values agree with the experimental one. The IPEA shift greatly affects the MS-CASPT2 calculated Tv values. Some important excited states of LH2 and oxyluciferin (oxyLH2) are charge-transfer states and have more than one dominant configuration, so for deeply researching the firefly bioluminescence, the multireference calculations are desired.  相似文献   

19.
We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.  相似文献   

20.
The optical activity in porphyrins can easily be induced by a chiral environment, but it is difficult to determine the underlying mechanisms purely on an experimental basis. Therefore, in this study, magnitudes of the perturbational, dipolar, and direct covalent contributions to the electronic circular dichroism (CD) are evaluated with the aid of quantum chemical computations. Electronic properties of model porphyrin chromophores are analyzed. Time-dependent density functional theory (TD DFT), particularly with the hybrid B3LYP functional, appeared suitable for estimation of the electronic excitation energies and spectral intensities. The transition dipole coupling (TDC) between chirally stacked porphyrins was determined as the most important mechanism contributing to their optical activity. This is in agreement with previous experimental observations, where chiral matrices often induce the stacking and large CD signals. About a 10 times smaller signal could be achieved by a chiral orientation of the phenyl or similar residues covalently attached to the porphyrin core. Also, this prediction is in agreement with known experiments. Perturbation models realized by a chirally arranged porphyrin and a point charge, or by a porphyrin and the methane molecule, provided the smallest CD signals. The electrically neutral methane induced similar CD magnitudes as those of the charge, but spectral shapes were different. For a complex of porphyrin and the alanine cation, a significant influence of the solvent on the resultant CD spectral shape was observed, while for the charge and methane perturbations, a negligible solvent effect was found. Detailed dependence of the induced optical activity on variations of geometrical parameters is discussed. The simulations of the induced porphyrin activity can thus bring important information about the structure and intermolecular interactions in chiral complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号