首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L−1 HNO3. The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 μg L−1, with a detection limit estimated as 3 μg L−1 at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level.  相似文献   

2.
Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g−1, 0.052 μg g−1 and 0.41 μg g−1, respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.  相似文献   

3.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

4.
In the present paper, a system for on-line preconcentration and determination of copper by flame atomic absorption spectrometry (FAAS) was developed. It was based on solid phase extraction of copper(II) ions on a minicolumn of Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation process was carried out using Doehlert designs. Four variables (sampling flow rate, SR; elution flow rate, buffer concentration, BC; and pH) were regarded as factors in the optimisation. The parameter “sensitivity efficiency (SE)” proposed in this paper, and defined as the analytical signal obtained for an on-line enrichment system for a preconcentration time of 1 min was used as analytical response in the optimisation process. Using the established experimental conditions, the proposed on-line system allowed determination of copper with detection limit (3σ/S) of 0.23 μg l−1, and a precision (repeatability), calculated as relative standard deviation (R.S.D.) of 3.9 and 3.7% for copper concentration of 5.00 and 20.00 μg l−1, respectively. The preconcentration factor obtained is 62. The recovery achieved for copper determination in presence of several cations demonstrated that this has enough selectivity for analysis of food samples. The robustness of the proposed system was also evaluated. The accuracy was confirmed by analysis of the following certified reference materials (CRMs): Rice flour NIES 10a, Spinach leaves NIST 1570a, Apples leaves NIST 1515 and Orchard leaves NBS 1571. This procedure was applied for copper determination in natural food samples.  相似文献   

5.
Using octadecyl functional groups (C18) bonded to silica gel as sorbent and methanol as eluent, the flow injection sorbent extraction features of dialkyldithiophosphates (RO)2P(S)S as the chelating agent for cadmium, copper and lead was investigated in respect of the effects of pH, alkyl substituent group, reagent concentration and masking agent, with flame atomic absorption spectrometric detection. The elements are quantitatively extracted with the short-alkyl-chain reagents (R up to propyl) in acidic medium. The extractability decreases with the number of carbon atoms in the alkyl groups of the reagents and with the reagent concentration when the alkyl groups are larger than butyl, but masking agents increase the extractability. An explanation proposed for this effect is the formation of polynuclear chelates. Diethyldithiophosphate can be used for the selective determination of cadmium, copper and lead in digested solid environmental samples. With 20 s sample loading at 8.7 ml min−1, the enhancement factors are 35 for cadmium and copper or 26 for lead; the detection limits (3σ) are 0.8, 1.4 and 10.0 μg 1−1 for cadmium, copper and lead, respectively.  相似文献   

6.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

7.
A flow system designed with solenoid micro-pumps is proposed for the determination of paraquat in natural waters. The procedure involves the reaction of paraquat with dehydroascorbic acid followed by spectrophotometric measurements. The proposed procedure minimizes the main drawbacks related to the standard chromatographic procedure and to flow analysis and manual methods with spectrophotometric detection based on the reaction with sodium dithionite, i.e. high solvent consumption and waste generation and low sampling rate for chromatography and high instability of the reagent in the spectrophotometric procedures. A home-made 10-cm optical-path flow cell was employed for improving sensitivity and detection limit. Linear response was observed for paraquat concentrations in the range 0.10–5.0 mg L−1. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 22 μg L−1, 63 measurements per hour and 1.0%, respectively. Results of determination of paraquat in natural water samples were in agreement with those achieved by the chromatographic reference procedure at the 95% confidence level.  相似文献   

8.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

9.
A flow injection wetting-film extraction system without segmentor and phase separator has been coupled to flame atomic absorption spectrometry for the determination of trace copper. Isobutyl methyl ketone (MIBK) was selected as coating solvent and 8-hydroxyquinoline (oxine) as the chelating reagent. By switching of a 8-channel valve and alternative initiation of two peristaltic pumps, MIBK, sample solution containing copper chelate of oxine, and air-segment sandwiched eluting solution (1.0 mol l−1 nitric acid) were sequentially aspirated into an extraction coil made of PTFE tubing of 360 cm length and 0.5 mm i.d. The formation of organic film in the wall of the extraction coil, extraction of the copper chelate into the organic film and back-extraction of the analyte into the eluting solution occurred consecutively when these zones aspirated into the extraction coil were propelled down the extraction coil by a carrier solution at a flow rate of 2 ml min−1. After leaving the extraction coil, the concentrated zone was transported to the nebulizer at its free uptake rate for atomization. Under the optimized conditions, an enrichment factor of 43 and a detection limit of 0.2 μg l−1 copper were achieved at a sample throughput rate of 30 h−1. Eleven determinations of a standard copper solution of 60 μg l−1 gave a relative standard deviation of 1.5%. Foreign ions possibly present in tap water and natural water did not interfere with the copper determination. The developed method has been successfully used to the determination of copper content of tap water and river water.  相似文献   

10.
A multicommuted flow system is proposed for spectrophotometric determination of hydrosoluble vitamins (ascorbic acid, thiamine, riboflavine and pyridoxine) in pharmaceutical preparations. The flow manifold was designed with computer-controlled three-way solenoid valves for independent handling of sample and reagent solutions and a multi-channel spectrophotometer was employed for signal measurements. Periodic re-calibration as well as the standard addition method was implemented by using a single reference solution. Linear responses (r=0.999) were obtained for 0.500-10.0 mg l−1 ascorbic acid, 2.00-50.0 mg l−1 thiamine, 5.00-50.0 mg l−1 riboflavine and 0.500-8.00 mg l−1 pyridoxine. Detection limits were estimated as 0.08 mg l−1 (0.5 μmol l−1) ascorbic acid, 0.8 mg l−1 (2 μmol l−1) thiamine, 0.2 mg l−1 (0.5 μmol l−1) riboflavine and 0.1 mg l−1 (0.9 μmol l−1) pyridoxine at 99.7% confidence level. A mean sampling rate of 60 determinations per hour was achieved and coefficients of variation of 1% (n=20) were estimated for all species. The mean reagent consumption was 25-fold lower in relation to flow-based procedures with continuous reagent addition. Average recoveries between 95.6 and 100% were obtained for commercial pharmaceutical preparations. Results agreed with those obtained by reference methods at 95% confidence level. The flow system is suitable for application in quality control processes and in dissolution studies of vitamin tablets.  相似文献   

11.
本文讨论了用火焰原子吸收法测定粗锡中的铜含量的方法。试料用盐酸、硝酸、酒石酸溶解。在5%盐酸介质中,使用空气-乙炔火焰,波长选用324.7 nm,用原子吸收光谱法测量铜的吸光度。以工作曲线法计算铜含量。研究了仪器的最佳测量条件,元素测定的质量数以及酸度的影响等实验。方法测定结果准确、可靠,样品加标回收率在97.20%~102.00%。能满足日常检测应用。  相似文献   

12.
A calibration method has been developed which is realised in the flow injection analysis (FIA) by the gradient technique. According to this method two transient peaks, one for a sample and the other for a sample with standard addition, are recorded and compared point by point in the entire defined time range. The analytical result is estimated on the basis of information gained about the local analyte concentrations in the sample zone. The method allows the results to be reliable when both the non-linear calibration dependence and the interference effect occur. As an example, calcium in synthetic samples containing silicon, phosphate, aluminium, vanadium and titanium, and also in iron ore sample, were determined by flame atomic absorption spectrometry (FAAS). It has been proved, that the method can be effective in overcoming even extremely strong interferences, providing analytical results with average accuracy equal to ca. 5% and with precision 2–3 times inferior to that obtained by conventional FI calibration.  相似文献   

13.
A continuous flow system for the determination of lead in home made spirituous beverages was developed. The determination was based on the formation of a neutral chelate of the element with ammonium pyrrolidine dithiocarbamate, its adsorption onto a minicolumn packed with sodium faujasite type Y synthetic zeolite, followed by elution with methyl isobutyl ketone and determination by flame atomic absorption spectrometry. Ethanol and copper interfere strongly in the determination and therefore, must be separated prior to the analysis. Copper is removed by precipitation with rubeanic acid, while ethanol is eliminated by rotaevaporation. Sample solutions containing Pb2+ in the concentration range from 5 to 120 μg l−1 at pH 2.5 could be analyzed, by using a preconcentration time of 3 min. Preconcentration factors from 80 to 140 were achieved for a sample volume of 6 ml and the detection limit varied from 1.4 to 3.5 μg l−1, depending on the matrix composition. The relative standard deviations for 60 μg l−1 Pb was 3.2% (n = 10) and the recovery of spikes (20, 40, 60 and 80 μg l−1) added to the samples was estimated within 92–105% range, suggesting that lead can be quantitatively determined in such samples. Determining lead in several samples by an alternative technique further checked the accuracy. Finally, the concentrations of Pb2+ determined in 28 samples of Venezuelan spirituous beverages were in 12.6–370.0 μg l−1 range, depending on the fermenting material based on different mixtures of agave, raw sugar cane and white sugar.  相似文献   

14.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   

15.
The development of a slurry sampling method for the determination of calcium, copper, iron, magnesium and zinc in fish tissue samples by flame atomic absorption spectrometry is described. In comparison with microwave-assisted digestion, the proposed method is simple, requires short time and eliminates total sample dissolution before analysis. Suspension medium was optimized for each analyte to obtain quantitative recoveries from fish tissue samples without matrix interferences. Nevertheless, iron recoveries higher than 46% were not found. Treatment of samples slurried in nitric acid by microwave irradiation for 15-30 s at 75-285 W permitted to achieve efficient recoveries for calcium, iron, magnesium and zinc. Further improvement in the matrix effects for iron determination was accomplished by the use of an additional step of short microwave-assisted suspension treatment. However, standard addition method was required for calcium and copper determination, being necessary hydrochloric acid as suspension medium for the last one. Although copper could not be determined in the certified reference material using microwave-assisted digestion, the accuracy of the slurry sampling method was verified for all the investigated analytes. Detection limits were 22.8 ± 8.0, 0.884 ± 0.092, 5.07 ± 0.76, 35.5 ± 0.7 and 1.17 ± 0.04 μg g−1 for calcium, copper, iron, magnesium and zinc, respectively. The standard deviations obtained using slurry sampling method and microwave-assisted digestion were not significantly different, and the mean relative standard deviation of the over-all method (n = 3) of the slurry sampling method for different concentration levels was below 12%.  相似文献   

16.
用自制的蒸气发生装置,在强还原剂存在下,对铜蒸气的生成进行了详细研究,并通过该装置测定非蒸气发生元素镁和在络合剂掩蔽下测铜两种不同的方法进行了验证。对酸的种类及浓度、NaBH4溶液流速及浓度、反应管道长度的影响等实验参数和干扰情况进行了研究。用该方法测定了面粉中铜的质量分数,检出限为6μg L。  相似文献   

17.
A simple and inexpensive procedure is proposed for the extension of the dynamic range of flame atomic absorption spectrometry measurements using on-line dilution. The proposed methodology is based on the use of a manifold with two coupled dilution chambers and a zone injection system. The samples are prediluted in a closed system which includes a variable-volume mixing chamber (10–120 ml) and two injection valves. The samples are injected through one of these valves, and the other is employed to take 100 μl of prediluted samples which are then passed through a new dilution chamber (volume 1–10 ml) and aspirated by the nebulizer of the instrument. A third injection valve mounted in the last part of the manifold is used for the direct injection of diluted standard solutions. Various dilution factors are obtained, ranging from 2 to 130 000 times, thus extending the analytical range of copper determination to more than 100 000 mg l−1.  相似文献   

18.
浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅   总被引:2,自引:0,他引:2  
采用以双硫腙为络合剂、Triton X-100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定。探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件。在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999。该方法已用于淡水鱼中痕量铅的测定。  相似文献   

19.
G. Doner  A. Ege 《Analytica chimica acta》2004,520(1-2):217-222
An evaluation is made of different digestion methods for the determination of iron and zinc in biscuits prior to flame atomic absorption analysis. For the initial studies, microwave digestion was enough (using hydrogen chloride and nitric acid 3:1, v/v, at 180 °C and 600 W) to provide comparable accuracy, precision, digestion time and non-critical handling of reagents to dry-ashing and wet digestion (using different acid mixtures) and also to a simple acid treatment at room temperature. Although, after a simple microwave digestion, the spiked recoveries were found around 96–102%, to reduce the digestion time and for simplicity we worked on wet acid treatments. The results showed that acid-only treatment is not enough to digest the samples without adding ethanol, which was found necessary to digest organic residue at room temperature. The method was validated by comparison of the data found for commercial biscuit samples through using the proposed procedure and the AOAC official reference spectrophotometric method. Fe concentration in the different biscuits (such as petit beurre, baby biscuits, etc.) ranged from 1.21 to 15.96 mg/100 g while Zn concentration ranged from 0.58 to 2.50 mg/100 g depending on biscuit type. The highest concentration of Fe was in baby biscuits and these biscuits were about thirteen times richer in Fe than petit beurre biscuits.  相似文献   

20.
Castro MT  Baccan N 《Talanta》2005,65(5):1264-1269
In the present paper, a procedure for preconcentration and determination of copper in soft drink using flame atomic absorption spectrometry (FAAS) is proposed, which is based on solid-phase extraction of copper(II) ions as its ion pair of 1,10-phenanthroline complexes with the anionic surfactant sodium dodecil sulphate (SDS), by Amberlite XAD-2 resin. The optimization process was carried out using 24–1 factorial and 22 factorial with a center point designs. Four variables (XAD-2 mass, copper mass, sample flow rate and elution flow rate) were regarded as factors in the optimization. Student's t-test on the results of the 24–1 factorial design with eight runs for copper extraction, demonstrated that the factors XAD-2 mass and sample flow rate in the levels studied are statistically significant. The 22 factorial with a center point design was applied in order to determine the optimum conditions for extraction. The procedure proposed allowed the determination of copper with detection limits (3/S) of 3.9 μg l−1. The precision, calculated as relative standard deviation (R.S.D.) was 1.8% for 20.0 μg l−1 of copper. The preconcentration factor was 100. The robustness of this procedure is demonstrated by the recovery achieved for determination of copper in the presence of several cations. This procedure was applied to the determination of copper in soft drink samples collected in Campinas, SP, Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号