首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions (NH4)2MeS4 = 2 NH3 + H2S + MeS3 (Me = Mo, W) were investigated by measuring the decomposition vapour pressures. Thermochemical data were obtained from these measurements: ΔH = 52 kcal/mole and ΔS = 105 cal/deg.mole for the decomposition of the tetrathiomolybdate. Similarly, ΔH = 69 kcal/mole and ΔS = 106 cal/deg.mole were obtained for the decomposition of the tetrathiotungstate. The normal heat of formation of (NH4)2MoS4 was found to be ΔH = ?140 kcal/mole. The kinetics of thermal decomposition of the above reactions were also measured.  相似文献   

2.
Summary The ability of [MoS4]2–, anions to be used as ligands for transition metal ions has been widely demonstrated, especially with Fe2+. The present study has been restricted to linear complexes such as (NEt4)2 [Cl2FeS2MoS2] and (NEt4)2[Cl2FeS2MoS2FeCl2]. Their electrochemical properties are described: upon electrochemical reduction, these compounds yield MoS2, as a black precipitate, and an iron complex in solution, assumed to be [SFeCl2]2–. The electrochemical reduction goes through two electron transfers, coupled with the breakdown of the molecular skeleton: a DISPl and an ECE mechanism. Depending on the solvent, the following equilibrium may be observed: [Cl4Fe2MoS4]2–[Cl2FeMoS4]2–+FeCl2. The equilibrium constant, KD, was evaluated by differential pulse polarography. KD is tightly related to the donor number of the solvent.  相似文献   

3.
林性如  刘春万 《结构化学》1993,12(4):307-311
<正> The electronic structures and bonding properties of the Mo-Cu-S complexes with a general formula [MoS4(CuCN)n]2-(n=1,2)have been investigated by using CNDO/2 method,and the effect of electron transfer on the formation of the Mo-Cu-S complexes has been discussed based on the bonding properties and the energy of the frontier orbitals.  相似文献   

4.
5.
Synthesis and Structure of New Sodium Hydrogen Sulfates Na(H3O)(HSO4)2, Na2(HSO4)2(H2SO4), and Na(HSO4)(H2SO4)2 Three acidic sodium sulfates have been synthesized from the system sodium sulfate/sulfuric acid and have been crystallographically characterized. Na(H3O)(HSO4)2 ( A ) crystallizes in the space group P21/c with the unit cell parameters a = 6.974(2), b = 13.086(2), c = 8.080(3) Å, α = 105.90(4)°, V = 709.1 Å3, Z = 4. Na2(HSO4)2(H2SO4) ( B ) is orthorhombic (space group Pna21) with the unit cell parameters a = 9.970(2), b = 6.951(1), c = 13.949(3) Å, V = 966.7 Å3 and Z = 4. Na(HSO4)(H2SO4)2 ( C ) crystallizes in the triclinic space group P1 with the unit cell parameters a = 5.084(1), b = 8.746(1), c = 11.765(3) Å, α = 68.86(2)°, β = 88.44(2)°, γ = 88.97(2)°, V = 487.8 Å3 and Z = 2. All three compounds contain SO4 tetrahedra as HSO4? anions and additionally in B and C in form of H2SO4 molecules. The ratio H:SO4 determines the connectivity degree in the hydrogen bond system. In A , there are zigzag chains and dimers additionally connected via oxonium ions. Complex chains consisting of cyclic trimers (two HSO4? and one H2SO4) are present in B . In structure C , several parallel chains are connected to columns due to the greater content of H2SO4. Sodium cations show a distorted octahedral coordination by oxygen in all three structures, the NaO6 octahedra being “isolated” (connected via SO4 tetrahedra only) in A . Pairs of octahedra with common edge form Na2O10 dimeric units in C . Such double octahedra are connected via common corners forming zigzag chains in B .  相似文献   

6.
Cp(2)MoS(4), 1, in CH(2)Cl(2) undergoes extensive oxidation by m-CPBA at -78 degrees C to give a 1,1,4,4-tetroxide, 2 (59%). Tetraoxide 2 rearranges at room temperature to give an unusual sulfur-atom protonated molybdocene disulfide dimer [(Cp(2)MoS(2)H)(2)](HSO(4))(2), 3. Crystal data for 3 are P, a = 6.751(2) Angstroms, b = 9.865(4) Angstroms, c = 11.549(5) Angstroms, alpha = 109.95(3) degrees, beta = 96.11(3) degrees, gamma = 108.22(3) degrees, V = 666.9(4) Angstroms(3), and Z = 1. The dimer was also obtained directly when the oxidation was conducted at 0 degree C in DMF. Under basic conditions, the dimer is cleaved to give molybdocene disulfide Cp(2)MoS(2), while treatment of the latter with acid converts it to the dimer 3.  相似文献   

7.
Zusammenfassung Es wird die Herstellung der Verbindungen Sr2(MnO4)OH und Sr2(MnO4)OH·2H2O beschrieben. Die Gitterkonstanten wurden aus den entsprechenden Pulverdiagrammen berechnet. Die Infrarotabsorptions-und die Reflexionsspektren im Sichtbaren sowie das magnetische und thermische Verhalten wurden untersucht und kurz besprochen.
Preparation and properties of the compounds Sr2(MnO4)OH and Sr2(MnO4)OH·2H2O
Methods for preparation of the anhydrous compound formulated as Sr2(MnO4)OH and of its dihydrate are described. Unit cell parameters, which are the same for both substances, have been calculated from X-ray powder diagramms. Infrared absorption and visible reflectance spectra as well as the magnetic and thermal properties are also reported and briefly discussed.


Mit 4 Abbildung  相似文献   

8.
Synthesis and Structure Analysis of (i-Pr)2NB(t-BuP)3 and (i-Pr)2NB(t-BuP)4 The diphosphide K(t-Bu)P-(t-BuP)2-P(t-Bu)K obtained by the cleavage reaction of the 3-membered ring system (i-Pr)2BN(t-BuP)2 with potassium reacts with t-BuPCl2 at ?78°C under ring expansion to form the P3B ring system (i-Pr)2NB(t-BuP)3 – 1,2,3-tri-t-butyl-tri-phospha-4-diisopropyl-aminoboretane ( 1 ). – The 5-membered P4B ring system (i-Pr)2NB(t-BuP)4 – 1,2,3,4-tetra-t-butyl-tetraphospha-5-diisopropylaminoborolidine, ( 2 ) – is formed from K(t-Bu)P? (t-BuP)2? P(t-Bu)K and (i-Pr)2NBCl2 analogous to the above reaction. 1 and 2 could be obtained in a pure form and characterized NMR spectroscopically and by X-ray structure analysis. 1 shows at 200 K two conformation isomers; for 2 31P-10,11B-isotopic shifts could be identified.  相似文献   

9.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

10.
Preparation and Crystal Structure of Ba(en)4(SbSe2)2 The new compound Ba(en)4(SbSe2)2 can be synthesized by dissolving of Ba4Sb4Se11 in ethylenediamine. It crystallizes in the monoclinic system, space group P21/c, with lattice constants see “Inhaltsübersicht”. Characteristic elements of the structure are [SbSe2?]n chains, which are formed by distorted trigonal SbSe3 pyramids connected by common corners.  相似文献   

11.
Synthesis of the Silatetraphospholanes (tBuP)4SiMe2, (tBuP)4SiCl2, and (tBuP)4Si(Cl)SiCl3 Molecular and Crystal Structure of (tBuP)4SiCl2 The reaction of the diphosphide K2[(tBuP)4] 7 with the halogenosilanes Me2SiCl2, SiCl4 or Si2Cl6 in a molar ratio of 1:1 leads via a [4 + 1]-cyclocondensation reaction to the silatetraphospholanes (tBuP)4SiMe2 1,1-dimethyl-1-sila-2,3,4,5-tetra-t-butyl-2,3,4,5-tetraphospholane, 1 , (tBuP)4SiCl2, 1,1-dichloro-1-sila-2,3,4,5-tetra-t-butyl-2,3,4,5-tetraphospholane, 2 , and (tBuP)4Si(Cl)SiCl3, 1-chloro-1-trichlorsilyl-1-sila-2,3,4,5-tetra-t-butyl-2,3,4,5-tetraphospholane, 3 , respectively, with the 5-membered P4Si ring system. The reaction leading to 1 is accompanied with the formation of the by-product Me2(Cl)-Si–(tBuP)4–Si(Cl)Me2 1a (5:1), which has a chain structure. On warming to 100°C 1a decomposes to 1 and Me2SiCl2. The compounds 2 and 3 do not react further with an excess of 7 due to strong steric shielding of the ring Si atoms by the t-butyl groups. 1, 2 and 3 could be obtained in a pure form and characterized NMR spectroscopically; 2 was also characterized by a single crystal structure analysis. 1a was identified by NMR spectroscopy only.  相似文献   

12.
Synthesis and Crystal Structures of (PPh4)2[As2Se4Cl12] and (PPh4)2[As2Se4Br12] The reaction of PPh4Cl and As2Se3 with SOCl2 or with chlorine in dichloromethane affords (PPh4)2[As2Se4Cl12] with good yields. From PPh4Br, As2Se3 and bromine the corresponding bromo compound was obtained. According to the X-ray crystal structure determinations both compounds are isotypic, crystallizing in the space group of P1 . In the anions two Se2X2 molecules are linked with two X? ions forming an Se4X2 ring in chair conformation. Each X?-ion is associated with an additional AsX3 molecule (X = Cl, Br).  相似文献   

13.
Cp(2)MoS(2), 3, reacts with SO(2) in CH(2)Cl(2)/EtOH mixtures to give Cp(2)MoS(3)O(2), 4, wherein the SO(2) has inserted into the S-S bond to give a dithiosulfate ligand. Crystal data for 4: P2(1)/n, a = 7.6782(6) A, b = 14.580(3) A, c = 10.2730(10) A, beta = 92.04(1) degrees, V = 1149(3) A(3), Z = 4. Cp(2)MoS(2)O, 5, reacts with SO(2) in CH(2)Cl(2) to give low yields of 4 plus other identified products. 5 reacts with SO(2) in MeOH and EtOH to give the corresponding bis(O-alkylthiosulfate), 6a and 6b, respectively. Crystal data for 6a: P 1 macro, a = 8.3226(13) A, b = 8.4736(11) A, c = 12.382(2) A, alpha = 87.803(11) degrees, beta = 77.758(11) degrees, gamma = 86.383(12) degrees, V = 851.4(2) A(3), Z = 2.  相似文献   

14.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

15.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

16.
Synthesis, Crystal Structures, and Properties of the Chromium(II) Phosphate Halides Cr2(PO4)Br and Cr2(PO4)I The new compounds Cr2(PO4)Br and Cr2(PO4)I have been obtained by reaction of CrPO4, Cr and Br2 or I2 in evacuated silica tubes at elevated temperatures (Cr2(PO4)Br: 900 °C, Cr2(PO4)I: 700 °C). Single crystals of deep blue Cr2(PO4)Br and turquoise Cr2(PO4)I with edge-lengths up to 2 mm and 0.3 mm, respectively, have been grown in experiments involving the gaseous phase. Single crystal data have been used for structure determination and refinement. Though being not isotypic, the two crystal structures are closely related. Two crystallographically independent Cr2+, in polyhedra [Cr1O3X3] and [Cr2O5X], form dimers [Cr12O2O2/2X4] and [Cr22O8X2]. Distances are 1.978 Å ≤ d(Cr–O) ≤ 2.096 Å (for the iodide: 1.959 Å ≤ d(Cr–O) ≤ 2.105 Å), 2.587 Å ≤ d(Cr–Br) ≤ 3.158 Å and 2.867 Å ≤ d(Cr–I) ≤ 3.327 Å. The structures of bromide and iodide can be distinguished by the different way of connection of the Cr1 containing dimers. The phosphate group shows slightly distorted tetrahedral geometry with 1.491 Å ≤ d(P–O) ≤ 1.559 Å (1.486 Å ≤ d(P–O) ≤ 1.567 Å) and angles of 106.48° ≤ ∠(O–P–O) ≤ 111.69° (106.57° ≤ ∠(O–P–O) ≤ 111.72°. IR-spectra of Cr2(PO4)Br and Cr2(PO4)I, the Raman-spectrum of Cr2(PO4)Br and electronic spectra of the two compounds in the UV/vis region at low temperature are reported and discussed.  相似文献   

17.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

18.
Synthesis and Crystal Structure of Metal(I) Hydrogen Sulfates – Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4, and Hg2(HSO4)2 Hydrogen sulfates Ag(H3O)(HSO4)2, Ag2(HSO4)2 · (H2SO4), and AgHSO4 have been synthesized from Ag2SO4 and sulfuric acid. Hg2(HSO4)2 was obtained from metallic mercury and 96% sulfuric acid as starting materials. The compounds were characterized by X‐ray single crystal structure determination. Ag(H3O)(HSO4)2 belongs to the structure type of Na(H3O)(HSO4). The silver atom is coordinated by 6 + 2 oxygen atoms. In the structure, there are dimers and chains of hydrogen bonded HSO4 tetrahedra. Dimers and chains are connected by the H3O+ ion to form a three dimensional hydrogen network. Ag2(HSO4)2(H2SO4) crystallizes isotypic to Na2(HSO4)2(H2SO4). The coordination number of silver is 6 + 1. The structure of Ag2(HSO4)2(H2SO4) is characterized by hydrogen bonded trimers of HSO4 tetrahedra, which are further connected to chains. For the recently published structure of AgHSO4 the hydrogen bonding system was discussed. There are tetrameres and chains, connected by bifurcated hydrogen bonds. The structure of Hg2(HSO4)2 contains Hg22+ cations with Hg–Hg distance of 2.509 Å. Every mercury atom is coordinated by one oxygen atom at shorter distance (2.18 Å) and three ones at longer distances (2.57 to 3.08 Å). The HSO4 tetrahedra form zigzag chains by hydrogen bonds.  相似文献   

19.
Reactions of two preformed trinuclear W/Cu/S clusters, [A](2)[WS(4)(CuCN)(2)] (1: A = Et(4)N; 2: A = PPh(4)), with different concentrations of acetic acid in MeCN generate two interesting 2D polymeric clusters [Et(4)N](3)[(WS(4)Cu(2))(2)(mu-CN)(3)].2MeCN (3), and [PPh(4)][WS(4)Cu(3)(mu-CN)(2)].MeCN (4), respectively. Compound 4 can also be readily obtained in a high yield from the reaction of 2 with equimolar [Cu(MeCN)(4)]PF(6) in MeCN. These compounds have been characterized by elemental analysis, IR spectra, thermal analysis, and single-crystal X-ray diffraction. An X-ray analysis reveals that compound 3 retains the WS(4)Cu(2) cluster core, which serves as a 3-connecting node to link equivalent nodes via single cyanide bridges, forming an anionic 2D (6,3) net. Compound 4 consists of a T-shaped WS(4)Cu(3) core, which also acts as a 3-connecting node, with links to 3 equivalent clusters either through single or double cyanide bridges, affording a different anionic 2D (6,3) network. The acetic acid induced aggregation of 3 and 4 from the two cluster precursors 1 and 2 suggests that this simple synthetic strategy is likely to be applicable to many related systems.  相似文献   

20.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号